
Chapter 4

The Small-Open-Economy

Real-Business-Cycle Model

In the previous two chapters, we arrived at the conclusion that a model driven by productivity

shocks can explain the observed countercyclicality of the trade balance. We also established that

two features of the model are important for making this prediction possible. First, productivity

shocks must be sufficiently persistent. Second, capital adjustment costs must not be too strong. In

this chapter, we extend the model of the previous chapter by allowing for three features that make

its structure more realistic: endogenous labor supply and demand, uncertainty in the technology

shock process, and capital depreciation. The resulting theoretical framework is known as the Small-

Open-Economy Real-Business-Cycle model, or, succinctly, the SOE-RBC model.
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4.1 The Model

Consider a small open economy populated by an infinite number of identical households with

preferences described by the utility function

E0

∞∑

t=0

βtU(ct, ht), (4.1)

where ct denotes consumption, ht denotes hours worked, β ∈ (0, 1) is the subjective discount factor,

and U is a period utility function, which is assumed to be increasing in its first argument, decreasing

in its second argument, and concave. The symbol Et denotes the expectations operator conditional

on information available in period t.

The period-by-period budget constraint of the representative household is given by

dt = (1 + rt−1)dt−1 − yt + ct + it + Φ(kt+1 − kt), (4.2)

where dt denotes the household’s debt position at the end of period t, rt denotes the interest

rate at which domestic residents can borrow in period t, yt denotes domestic output, it denotes

gross investment, and kt denotes physical capital. The function Φ(·) is meant to capture capital

adjustment costs and is assumed to satisfy Φ(0) = Φ′(0) = 0 and Φ′′(0) > 0. Small open economy

models typically include capital adjustment costs to avoid excessive investment volatility in response

to variations in the productivity of domestic capital or in the foreign interest rate. The restrictions

imposed on Φ and Φ′ ensure that in the steady state adjustment costs are nil and the relative

price of capital goods in terms of consumption goods is unity. Note that here adjustment costs are

expressed in terms of final goods. Alternatively, one could assume that adjustment costs take the

form of lost capital goods (see exercise 4.9).

Output is produced by means of a linearly homogeneous production function that takes capital
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and labor services as inputs,

yt = AtF (kt, ht), (4.3)

where At is an exogenous and stochastic productivity shock. This shock represents the single source

of aggregate fluctuations in the present model. The stock of capital evolves according to

kt+1 = (1− δ)kt + it, (4.4)

where δ ∈ (0, 1) denotes the rate of depreciation of physical capital.

Households choose processes {ct, ht, yt, it, kt+1, dt}∞t=0 to maximize the utility function (4.1)

subject to (4.2)-(4.4) and a no-Ponzi constraint of the form

lim
j→∞

Et
dt+j∏j

s=0(1 + rs)
≤ 0. (4.5)

Use equations (4.3) and (4.4) to eliminate, respectively, yt and it from the sequential budget con-

straint (4.2). This operation yields

dt = (1 + rt−1)dt−1 −AtF (kt, ht) + ct + kt+1 − (1 − δ)kt + Φ(kt+1 − kt). (4.6)

The Lagrangian corresponding to the household’s maximization problem is

L = E0

∞∑

t=0

βt {U(ct, ht)

+λt [AtF (kt, ht) + (1− δ)kt + dt − ct − (1 + rt−1)dt−1 − kt+1 − Φ(kt+1 − kt)]} ,

where βtλt denotes the Lagrange multiplier associated with the sequential budget constraint (4.6).

The first-order conditions associated with the household’s maximization problem are (4.5) holding
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with equality, (4.6), and

λt = β(1 + rt)Etλt+1 (4.7)

Uc(ct, ht) = λt (4.8)

− Uh(ct, ht) = λtAtFh(kt, ht) (4.9)

λt[1 + Φ′(kt+1 − kt)] = βEtλt+1

[
At+1Fk(kt+1, ht+1) + 1 − δ + Φ′(kt+2 − kt+1)

]
. (4.10)

Optimality conditions (4.7), (4.8), and (4.10) are familiar from chapter 3. Optimality condition (4.9)

equates the supply of labor to the demand for labor. To put it in a more familiar form, divide (4.9)

by (4.8) to eliminate λt. This yields

− Uh(ct, ht)

Uc(ct, ht)
= AtFh(kt, ht). (4.11)

The left-hand side of this expression is the household’s labor supply schedule. It is the marginal

rate of substitution between leisure and consumption, which is increasing in hours worked, holding

the level of consumption constant.1 The right-hand side of (4.11) is the marginal product of labor,

which, in a decentralized version of this model equals the demand for labor. The marginal product

of labor is decreasing in labor, holding constant the level of capital.

The law of motion of the productivity shock is assumed to be given by the first-order autore-

gressive process

lnAt+1 = ρ lnAt + η̃εt+1, (4.12)

where εt is assumed to be exogenous, stochastic, and i.i.d., with mean zero and unit standard

deviation, the parameter η̃ defines the standard deviation of the innovations to productivity, and

1A sufficient condition for −Uh/Uc to be increasing in ht holding ct constant is Uch < 0, and the necessary and
sufficient condition is Uhh/Uh > Uch/Uc.
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the parameter ρ ∈ (−1, 1) measures the serial correlation of the technology shock. According to this

expression, the expected value of the productivity shock in period t+ 1 conditional on information

available in period t is a fraction ρ of the current productivity shock,

Et lnAt+1 = ρ lnAt. (4.13)

More generally, the assumed AR(1) structure of the productivity shock implies that the its expected

value j periods ahead conditional on current information is a fraction ρj of its present value,

Et lnAt+j = ρjAt. In other words, lnAt is always expected to converge to zero at the rate ρ.

4.1.1 Inducing Stationarity: External Debt-Elastic Interest Rate (EDEIR)

In chapters 2 and 3 we saw that the equilibrium of a small open economy with one internationally

traded bond and a constant interest rate satisfying β(1+r) = 1 features a random walk in consump-

tion, net external debt, and the trade balance. Under perfect foresight, that model predicts that

the steady state levels of debt, consumption, and the trade balance depend on initial conditions,

such as the initial level of debt itself. This does not mean that the deterministic steady state is

indeterminate. Rather, it means that the steady state is history dependent.

The nonstationarity of the small open economy model complicates the task of approximating

equilibrium dynamics, because available approximation techniques require stationarity of the state

variables. Here, we follow Schmitt-Grohé and Uribe (2003) and induce stationarity by making the

interest rate debt elastic.2

Specifically, we assume that the interest rate faced by domestic agents, rt, is increasing in the

2In section 4.10 we study various alternative ways to induce stationarity.
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country’s cross-sectional average of debt, which we denote by d̃t. Formally, rt is given by

rt = r∗ + p(d̃t), (4.14)

where r∗ denotes the world interest rate and p(·) is a country-specific interest rate premium. House-

holds take the evolution of d̃t as exogenously given. For simplicity, we assume that the world interest

rate, r∗, is constant. The function p(·) is assumed to be strictly increasing. As we will see shortly,

the assumption of a debt-elastic interest rate premium gives rise to a steady state of the model that

is independent of initial conditions. In addition, this assumption ensures that a first-order approx-

imation of the equilibrium dynamics converge to the true equilibrium dynamics as the supports of

the underlying shocks become small.

The intuition why a debt-elastic interest rate induces stationarity is simple. A growing level of

debt causes the country premium to rise inducing households to increase savings, which curbs debt

growth. Similarly, if the external debt falls below its steady state level, the country premium falls

inducing households to increase consumption and reduce savings, which fosters debt growth.

Here, we have motivated a debt-elastic interest rate on purely technical grounds. However,

this feature is also of interest for empirical and theoretical reasons. In chapters 5 and 6, we

argue on econometric grounds that data from emerging countries favor a significantly debt-sensitive

interest rate. From a theoretical point of view, a debt-elastic interest rate is of interest because it

represents a simple way to capture the presence of financial frictions. In chapter 13, we provide

micro-foundations to this interpretation in the context of models with imperfect enforcement of

international debt contracts.
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4.1.2 Equilibrium

Because agents are assumed to be identical, in equilibrium the cross-sectional average level of debt

must be equal to the individual level of debt, that is,

d̃t = dt. (4.15)

Use equations (4.8), (4.14), and (4.15) to eliminate λt, rt, and d̃t from (4.5), (4.6), (4.7), and

(4.10) to obtain

dt = [1 + r∗ + p(dt−1)]dt−1 + ct + kt+1 − (1 − δ)kt + Φ(kt+1 − kt) −AtF (kt, ht). (4.16)

Uc(ct, ht) = β(1 + r∗ + p(dt))EtUc(ct+1, ht+1) (4.17)

Uc(ct, ht)[1 + Φ′(kt+1 − kt)] = βEtUc(ct+1, ht+1)
[
At+1Fk(kt+1, ht+1) + 1 − δ + Φ′(kt+2 − kt+1)

]
.

(4.18)

lim
j→∞

Et
dt+j∏j

s=0(1 + r∗ + p(ds))
= 0. (4.19)

A competitive equilibrium is a set of processes {dt, ct, ht, kt+1, At} satisfying (4.11), (4.12), and

(4.16)-(4.19), given A0, d−1, and k0, and the process {εt}∞t=0.

Given the equilibrium processes of consumption, hours, capital, and debt, output is obtained

from equation (4.3), investment from equation (4.4), and the interest rate from equation (4.14)

evaluated at d̃t = dt. One can then construct the equilibrium process of the trade balance from the

definition

tbt ≡ yt − ct − it − Φ(kt+1 − kt), (4.20)

where tbt denotes the trade balance in period t. Finally, the current account is given by the sum
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of the trade balance and net investment income, that is,

cat = tbt − rt−1dt−1. (4.21)

Alternatively, one could construct the equilibrium process of the current account by using the fact

that the current account measures the change in net foreign assets, that is,

cat = dt−1 − dt. (4.22)

4.2 Decentralization

The economy presented thus far assumes that production, employment, and the use of capital are

all carried out within the household. Here, we present an alternative formulation in which all of

these activities are performed in the marketplace. This formulation is known as the decentralized

economy. A key result of this section is that the equilibrium conditions of the decentralized economy

are identical to those of the centralized one.

4.2.1 Households in the Decentralized Economy

We assume that each period the household supplies ht hours to the labor market. We also assume

that the household owns shares of a firm that produces physical capital and rents it to firms that

produce final goods. Let wt denote the real wage, πt the profit generated by capital-producing

firms, st the number of shares of the capital producing firm owned by the household and pst the

price of each share. The household takes wt, πt, and pst as exogenously given. Its period-by-period

budget constraint can then be written as

dt = (1 + rt−1)dt−1 + ct + pst(st − st−1)− st−1πt −wtht (4.23)
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The household chooses processes {ct, ht, dt, st}∞t=0 to maximize the utility function (4.1) subject

to (4.5) and (4.23), taking as given the processes {rt, wt, πt, pst}∞t=0 and the initial conditions (1 +

r−1)d−1 and s−1. The first-order conditions associated with the household’s problem are (4.5)

holding with equality, (4.7), (4.8), (4.23),

− Uh(ct, ht)

Uc(ct, ht)
= wt, (4.24)

and

λtp
s
t = βEtλt+1[p

s
t+1 + πt+1]. (4.25)

The variable pst represents a stock market index such as the S&P 500. The above Euler equation

can be integrated forward to obtain

pst = Et

∞∑

j=1

βj
λt+j
λt

πt+j, (4.26)

which states that the value of the stock market in period t equals the present discounted value of

future expected profits.

4.2.2 Firms Producing Final Goods

Firms produce final goods with labor and capital and operate in perfectly competitive markets.

The production technology is given by

yt = AtF (kt, ht).

Profits in period t are given by

AtF (kt, ht) − wtht − utkt.
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Each period t ≥ 0 the firm hires workers and rents capital to maximize profits. The first-order

conditions associated with the firm’s profit maximization problem are

AtFh(kt, ht) = wt (4.27)

and

AtFk(kt, ht) = ut. (4.28)

Because the production function is assumed to be homogeneous of degree one, profits are zero at

all times. To see this multiply (4.27) by ht, (4.28) by kt and sum the resulting expressions to obtain

AtFh(kt, ht)ht+AtFk(kt, ht)kt = wtht+utkt. By the assumed linear homogeneity of the production

function the left hand side of this expression is equal to AtF (kt, ht). It then follows that the total

cost of production equals output, or, that profits equal zero.

4.2.3 Firms Producing Capital Goods

Firms producing capital invest it units of final goods each period and are subject to adjustment

costs Φ(kt+1 − kt) measured in units of final goods. Each period, these firms rent the stock of

capital to firms producing final goods at the rental rate ut per unit. Profits of firms producing

capital goods are then given by

πt = utkt − it − Φ(kt+1 − kt) (4.29)

The problem of the firm producing capital goods is to choose processes {πt, it, kt+1}∞t=0 maximize

the present discounted value of profits

E0

∞∑

t=0

βt
λt
λ0
πt
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subject to the law of motion of the capital stock given in equation (4.4) and the definition of profits

given in equation (4.29), taking as given the processes {ut, λt}∞t=0 and the initial condition k0. Note

that profits are discounted using the factor βtλt/λ0, which is the value assigned by households

to contingent payments of goods in period t in terms of units of goods in period 0. This way of

discounting makes sense because households own the firms producing capital. Note further that

the objective function of the firm is identical to the right-hand side of optimality condition (4.26).

This means that the objective of the firm producing capital can be interpreted as maximizing the

value of the firm in the stock market.

Using equation (4.4) to eliminate it from equation (4.29) and the resulting expression to elimi-

nate πt from the firm’s objective function yields

E0

∞∑

t=0

βt
λt
λ0

[(ut + 1 − δ)kt − kt+1 − Φ(kt+1 − kt)]

The optimality condition with respect to kt+1 is then given by

λt[1 + Φ′(kt+1 − kt)] = βEtλt+1

[
ut+1 + 1 − δ + Φ′(kt+2 − kt+1)

]
. (4.30)

4.2.4 The Decentralized Equilibrium

We can normalize the number of shares to be one per household at all times. Thus, we have

st = 1. (4.31)

A competitive equilibrium in the decentralized economy is then a set of processes {dt, d̃t, ct, pst , st,

rt, πt, ht, wt, λt, yt, ut, kt+1, it, At}∞t=0, satisfying (4.3), (4.4), (4.7), (4.8), (4.12), (4.14), (4.15),

(4.19), (4.23), (4.24), and (4.26)-(4.31), given A0, d−1, and k0, and the process {εt}∞t=0.
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It is straightforward to see that the equations included in this definition can be combined to

produce all of the equations conforming the equilibrium in the centralized economy defined in

section 4.1.2. It can also be readily established that if all of the conditions for an equilibrium in

the centralized economy are satisfied, then one can residually construct processes for market prices,

profits, and share holdings, namely processes {wt, ut, pst , πt, st}∞t=0, so that all of the equilibrium

conditions of the decentralized economy listed here are satisfied. This completes the proof that the

equilibrium conditions of the centralized and decentralized economies are identical.

4.3 Functional Forms

We assume that the period utility function takes the form

U(c, h) =
G(c, h)1−σ − 1

1 − σ
, σ > 0,

with

G(c, h) = c− hω

ω
, ω > 1.

The form of the subutility index G(c, h) is due to Greenwood, Hercowitz, and Huffman (1988)

and is typically referred to as GHH preferences. It implies that the labor supply (the marginal

rate of substitution between consumption and leisure) is independent of the level of consumption.

Specifically, under GHH preferences, equilibrium condition (4.24) becomes

hω−1
t = wt. (4.32)

This labor supply schedule has a wage elasticity of 1/(ω − 1) and is independent of ct. GHH

preferences were popularized in the open economy business cycle literature by Mendoza (1991).
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The period utility function U(c, h) displays constant relative risk aversion (CRRA) over the

subutility index G(c, h). The parameter σ measures the degree of relative risk aversion, and its

reciprocal, 1/σ, measures the intertemporal elasticity of substitution.

We adopt a Cobb-Douglas specification for the production function,

F (k, h) = kαh1−α,

with α ∈ (0, 1). This specification implies a unitary elasticity of substitution between capital and

labor. That is, a one percent increase in the wage to rental ratio, wt/ut, induces firms to increase

the capital-labor ratio by one percent. To see this divide equation (4.27) by equation (4.28) and

use the Cobb-Douglas form for the production function to obtain

(
1 − α

α

)
kt
ht

=
wt
ut
,

which implies that in equilibrium the capital-labor ratio is proportional to the wage to rental ratio.

The Cobb-Douglas specification of the production function is widely used in the business-cycle

literature.

The capital adjustment cost function is assumed to be quadratic,

Φ(x) =
φ

2
x2,

with φ > 0. This specification implies that net investment, whether positive or negative, generates

resource costs.

Finally, we follow Schmitt-Grohé and Uribe (2003) and assume that the country interest rate

premium takes the form

p(d) = ψ1

(
ed−d − 1

)
,
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where ψ1 > 0 and d̄ are parameters. According to this expression the country premium is an

increasing and convex function of net external debt.

4.4 Deterministic Steady State

Assume that the variance of the innovation to the productivity shock, η̃, is nil. We refer to such an

environment as a deterministic economy. We define a deterministic steady state as an equilibrium

of the deterministic economy in which all endogenous variables are constant over time.

The characterization the deterministic steady state is of interest for two reasons. First, the

steady state facilitates the calibration of the model. This is because, to a first approximation, the

deterministic steady state coincides with the average position of the model economy. In turn, often

several structural parameters of the model are o calibrated to match average characteristics of the

model economy, such as labor shares, consumption shares, and trade-balance-to-output ratios to

their empirical counterparts. Second, the deterministic steady state is often used as a convenient

point around which the equilibrium conditions of the stochastic economy are approximated.

For any variable we denote its steady-state value by removing the time subscript. Evaluating

equilibrium condition (4.17) at the steady state yields

1 = β
[
1 + r∗ + ψ1

(
ed−d − 1

)]
.

Assume that

β(1 + r∗) = 1.

In the context of the present model, this assumption is a normalization, and is not necessary to
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ensure stationarity. Combining the above two restrictions one obtains

d = d.

The steady-state version of (4.18) implies that

1 = β

[
α

(
k

h

)α−1

+ 1 − δ

]
.

This expression delivers the steady-state capital-labor ratio, which we denote by κ. Formally,

κ ≡ k

h
=

(
β−1 − 1 + δ

α

)1/(α−1)

.

Using this expression to eliminate the capital-labor ratio from equilibrium condition (4.11) evaluated

at the steady state, one obtains the following expression for the steady-state level of hours

h = [(1− α)κα]1/(ω−1) .

Given the steady-state values of labor and the capital-labor ratio, the steady-state level of capital

is simply given by

k = κh.

Finally, the steady-state level of consumption can be obtained by evaluating equilibrium condi-

tion (4.16) at the steady state. This yields

c = −r∗d+ καh− δk.

This completes the characterization of the deterministic steady state of the present economy.
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4.5 Calibration

An important intermediate step in computing the quantitative predictions of a business-cycle model

is to assign values to its structural parameters. There are two main ways to accomplish this step.

One is econometric estimation by methods such as the generalized method of moments (GMM),

impulse response matching, maximum likelihood, or likelihood-based Bayesian methods. We will

explain and apply several of these econometric techniques in later chapters. The second approach,

which we study here, is calibration. Almost always, business-cycle studies employ a combination

of calibration and econometric estimation.

In general, the calibration method assigns values to the parameters of the model in three different

ways: (a) Using sources unrelated to the macro data the model aims to explain. (b) By matching

first moments of the data that the model aims to explain. (c) By matching second moments of the

data the model aims to explain.

To illustrate how calibration works, we adapt the calibration strategy adopted in Mendoza

(1991) to the present model. His SOE-RBC model aims to explain the Canadian business cycle.

The time unit in the model is meant to be one year. In the present model, there are 10 parameters

that need to be calibrated: σ, δ, r∗, α, d, ω, φ, ψ1, ρ, and η̃. We separate these parameters into

the three calibration categories described above.

(a) Parameters Calibrated Using Sources Unrelated To The Data The Model

Aims To Explain

The parameters that fall in this category are the intertemporal elasticity of substitution, σ, the

depreciation rate, δ, and the world interest rate, r∗. Based on parameter values widely used in

related business-cycle studies, Mendoza sets σ equal to 2, δ equal to 0.1, and r∗ equal to 4 percent

per year.
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(b) Parameters Set To Match First Moments Of The Data The Model Aims To

Explain

In this category are the capital elasticity of the production function, α, and the parameter d

pertaining to the country interest-rate premium. The parameter α is set to match the average

labor share in Canada of 0.68. In the present model, the labor share, given by the ratio of labor

income to output, or wtht/yt, equals 1 − α at all times. To see this, note that in equilibrium, wt

equals the marginal product of labor, which, under the assumed Cobb-Douglas production function

is given by (1− α)yt/ht.

The parameter d is set to match the observed average trade-balance-to-output ratio in Canada

of 2 percent. Combining the definition of the trade balance given in equation (4.20) with the

resource constraint (4.16) implies that in the steady state

tb = r∗d.

This condition states that in the deterministic steady state the country must generate a trade

surplus sufficiently large to service its external debt. Dividing both sides by steady-state output

and solving for d yields

d =
tb/y

r∗
y,

At this point we know that tb/y = 0.02 and that r∗ = 0.04, but y remains unknown. From the

derivation of the steady state presented in section 4.4, one can deduce that

y = [(1− α)καω]
1

ω−1 ,

where κ = [(α/(r∗+ δ)]1/(1−α). The only unknown parameter in the expression for y, and therefore

d, is ω. Next, we discuss how the calibration strategy assigns values to ω and the remaining
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unknown structural parameters.

(c) Parameters Set To Match Second Moments Of The Data The Model Aims

To Explain

This category of parameters contains ω, which governs the wage elasticity of labor supply, φ, which

defines the magnitude of capital adjustment costs, ψ1 which determines the debt sensitivity of the

interest rate, and ρ and η̃ defining, respectively, the persistence and volatility of the technology

shock. The calibration strategy for these parameters is to match the following five second moments

of the Canadian data at business-cycle frequency: A standard deviation of hours of 2.02 percent,

a standard deviation of investment of 9.82 percent, a standard deviation of the trade-balance-to-

output ratio of 1.87 percentage points, a serial correlation of output of 0.62, and a standard deviation

of output of 2.81 percent.3 These are natural targets, as their theoretical counterparts are directly

linked to the parameters to be calibrated. In practice, this last step of the calibration procedure goes

as follows: (i) Guess values for the five parameters in category (c). This automatically determines

a value for d. (ii) Approximate the equilibrium dynamics of the model. (We will discuss how to

accomplished this task shortly.) (iii) Calculate the implied five second moments to be matched in

(c). (iv) If the match between actual and predicted second moments is judged satisfactory, the

procedure has concluded. If not, try a new guess for the five parameters to be calibrated and

return to (i). There is a natural way to update the parameter guess. For instance, if the volatility

of output predicted by the model is too low, raise the volatility of the innovation to the technology

shock, η̃. Similarly, if the volatility of investment is too high, increase the value of φ. And so on.

In general, there are no guarantees of the existence of a set of parameter values that will produce

an exact match between the targeted empirical second moments and their theoretical counterparts.

3The standard deviations of hours, investment, and output are measured in percent because (the cyclical compo-
nents of) hours, investment, and output are measured as percent deviations of these indicators from trend.
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Table 4.1: Calibration of the EDEIR Small Open RBC Economy

Parameter σ δ r∗ α d ω φ ψ1 ρ η̃

Value 2 0.1 0.04 0.32 0.7442 1.455 0.028 0.000742 0.42 0.0129

So some notion of distance and tolerance is in order. The parameter values that result from this

calibration procedure are shown in table 4.1.

It is important to note that the calibration strategy presented here is just one of many possible

ones. For instance, we could place δ in category (b) and add the average investment share as a first

moment of the data to be matched. Similarly, we could take the parameter ω out of category (c)

and place it instead in category (a). To assign a value to ω parameter we could then use existing

micro-econometric estimates of the Frisch elasticity of labor supply. Finally, a calibration approach

that has been used extensively, especially in the early days of the RBC literature, is to place ρ and

η̃ into category (a) instead of (c). Under this approach, one uses Solow residuals as a proxy for

the productivity shock At. Then one estimates a univariate representation of the Solow residual to

obtain values for ρ and η̃.

4.6 Approximating Equilibrium Dynamics

The competitive equilibrium of the SOE-RBC model is described by a system of nonlinear stochastic

difference equations. Closed-form solutions to this type of systems are typically unavailable. We

therefore must resort to an approximate solution. There exist a number of techniques that have

been devised to solve such dynamic systems. The one we study in this section is based on a linear

approximation of the equilibrium conditions.

It is important to chose carefully the base of the linearization. It is oftenappropriate to linearize

the system with respect to the logarithm of some variables. This is known as log-linearization, and
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is useful for variables whose empirical counterparts are expressed in log (or percent) deviations

from trend. In the present SOE-RBC model, this is the case with yt, ct, ht, kt, and At. For

other variables, it is more natural to perform the linearization with respect to their levels, not with

respect to their logs. This is the case, for instance, with net interest rates, like rt, or variables that

can take negative values, such as tbt, cat, and dt, or ratios, like the investment-to-output ratio.

Before performing the linearization of the equilibrium conditions of the SOE-RBC model, we

briefly explain how to linearize a function with respect to a mix of bases, the log for some variables

and the level for others. As an illustration, consider the expression

st = Etm(ut, vt, zt+1).

We wish to linearize this expression with respect to the logs of st, ut, and zt+1, and with respect

to the level of vt. To this end, let ŝt ≡ ln(st/s), ût ≡ ln(ut/u), and ẑt+1 ≡ ln(zt+1/z) denote the

log-deviations of st, ut, and zt+1 with respect to their respective deterministic steady-state values,

denoted s, u, and z, and let v̂t ≡ vt − v denote the deviation of vt from its steady-state value,

denoted v. Then, we can write the above expression as

sebst = Etm
(
uebut , v̂t + v, zebzt+1

)
.

The linerization results from differentiating the above expression with respect to ŝt, ût, v̂t, and ẑt+1

around their respective deterministic steady-state values. Note that the deterministic steady-state

values of all hatted variables is zero. In performing the differentiation, recall that the expecta-

tion operation is an inegral, and that the differentiation of an integral with respect to variables

appearing in the integrand is the integral of the differentiated integrand. Then the desired linear
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approximation is given by

sŝt = muuût +mvv̂t +mzzEtẑt+1,

where mu, mv , and mz denote the partial derivatives of m(·, ·, ·) with respect to ut, vt, and zt+1,

respectively, evaluated at the steady state (u, v, z). With this background, we now turn to the

linearization of the equilibrium conditions of the SOE-RBC model.

We linearize the system with respect to the logs of ct, ht, kt, and At, and with respect to the

level of dt. Accordingly, let x̂t ≡ ln(xt/x), for xt = ct, ht, kt, At, and d̂t ≡ dt − d. Then, the

linearized version of equilibrium conditions (4.11), (4.13), and (4.16)-(4.18) is

[εhh − εch]ĥt + [εhc − εcc]ĉt = Ât + α(k̂t − ĥt) (4.33)

EtÂt+1 = ρÂt (4.34)

1

y
d̂t =

1

y
[ψ1d+ 1 + r∗]d̂t−1 + scĉt

+
si
δ

[k̂t+1 − (1 − δ)k̂t]

−Ât − αk̂t − (1− α)ĥt (4.35)

εchĥt + εccĉt = ψ1βd̂t + εchEtĥt+1 + εccEtĉt+1 (4.36)

εccĉt + εchĥt + Φ′′(0)k(k̂t+1 − k̂t) = εccEtĉt+1 + εchEtĥt+1

+
r∗ + δ

1 + r∗

[
EtÂt+1 + (α− 1)(Etk̂t+1 − Etĥt+1)

]

+
Φ′′(0)k

1 + r∗
[Etk̂t+2 −Etk̂t+1] (4.37)

where εhh ≡ Uhhh/Uh, εch ≡ Uchh/Uc, εhc ≡ Uhcc/Uh, εcc ≡ Uccc/Uc, stb ≡ r∗d/F (k, h), sc ≡

c/F (k, h), si ≡ δk/F (k, h), and y ≡ F (k, h). The linearization uses the particular forms assumed

for the production function and the country premium function. Of course, we could have linearized

an expanded version of the equilibrium conditions, including equations defining additional macro
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indicators of interest. For instance, the system could have included equations (4.3), (4.4), (4.20),

and (4.21), jointly defining yt, it, tbt, and cat.

We now express the set of equilibrium conditions and its linearized version using a more compact

notation, which applies to a large class of dynamic stochastic general equilibrium models, not just

the SOE-RBC model. Let yt be a vector collecting the control variables of the model. Control

variables in period t are endogenous variables that are determined in period t. In the SOE-RBC

model, as defined by equations (4.11), (4.13), and (4.16)-(4.18) the vector yt contains ln ct and lnht.

Let x1
t denote the vector of endogenous state variables. Endogenous state variables in period t are

endogenous variables determined before period t. In the SOE-RBC model, x1
t includes lnkt and

dt−1. Let x2
t denote the vector of exogenous state variables. Exogenous state variables in period

t are exogenous variables that are determined in period t or earlier. In the SOE-RBC model, x2
t

includes a single varialbe, lnAt. Let xt ≡ [x1
t
′
x2
t
′
]′ denote the vector of state variables.

The equilibrium conditions of the model, given by equations (4.11), (4.13), and (4.16)-(4.18),

can be written as

Etf(yt+1, yt, xt+1, xt) = 0. (4.38)

The law of motion of the exogenous state vector x2
t is given by

x2
t+1 = Λx2

t + η̃εt+1. (4.39)

where, in general, εt is a vector of i.i.d. random variables with mean zero and unit variance, Λ is a

square matrix with all eigenvalues inside the unit circle, and η̃ is a matrix of parameters defining

the variance covariance matrix of innovations to the exogenous state vector. In the SOE-RBC

model εt. Λ, and η̃ are all scalars (with Λ = ρ).
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The deterministic steady state is a pair of constant vectors y and x that solves the system

f(y, y, x, x) = 0.

The steady-state vectors y and x are assumed to be known. In section 4.4, we derived the steady

state of the SOE-RBC model analytically.

We restrict attention to equilibria in which at every date t the economy is expected to converge

to the non-stochastic steady state, that is, we impose

lim
j→∞



Etyt+j

Etxt+j


 =



y

x


 , (4.40)

This restriction implies that the transversality condition (4.19) is always satisfied.

As mentioned earlier, the representation of an equilibrium given by conditions (4.38)-(4.40) is

quite general and applies to a large class of dynamic stochastic general equilibrium models. Thus,

the solution technique discussed below is not restricted to the SOE-RBC model.

The first-oerder Taylor expansion of equation (4.38) is given by

fy′Etŷt+1 + fy ŷt + fx′Etx̂t+1 + fxx̂t (4.41)

where x̂t ≡ xt − x and ŷt ≡ yt − y denote, respectively, the deviations of xt and yt from their

steady state values. The matrices fy′ , fy, fx′ , and fx denote, respectively, the partial derivatives of

the function f with respect to y′, y, x′, and x evaluated at the nonstochastic steady state. These

matrices are assumed to be known. Except for small models, like the SOE-RBC model studied

here, these derivatives can be tedious to obtain by hand. The matlab scripts indicated at the end

of this section perform and evaluate these derivatives automatically.
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The solution of the linear system (4.41) with the associated exogenous law of motion (4.39),

and the terminal condition (4.40) is given by

x̂t+1 = hxx̂t + η εt+1

and

ŷt = gxx̂t,

The matrix η is given by

η =




∅

η̃


 .

The Appendix shows how to obtain the matrices hx and gx, given the matrices fy′ , fy, fx′ , and

fx. The Appendix also shows how to compute second moments and impulse response functions

predicted by the model.

Matlab code for performing first-order accurate approximations to DSGE models and for com-

puting second moments and impulse response functions is available at www.columbia.edu/~mu2166/1st_order.htm

Matlab code to solve the specific SOE-RBC EDEIR model studied here is available online at

www.columbia.edu/~mu2166/book/.

4.7 The Performance of the Model

Having calibrated the model and computed a first-order approximation to the equilibrium dynam-

ics, we are ready to explore its quantitative predictions. As a point of reference, table 4.2 displays

empirical second moments of interest from the Canadian economy. The first three columns display

the empirical second moments reported by Mendoza (1991). The table shows standard deviations,

serial correlations, and contemporaneous correlations of output with output, consumption, invest-

www.columbia.edu/~mu2166/1st_order.htm
www.columbia.edu/~mu2166/book/
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ment, hours, and the trade-balance-to-output ratio. The data is annual, quadratically detrended,

and covers the period 1946-1985. Although outdated, we choose to use the empirical moments

reported in Mendoza (1991) to preserve coherence with the calibration strategy of subsection 4.5.

To gauge the stability of the empirical regularities and the out-of-sample performance of the SOE-

RBC model, the middle three columns of table 4.2 display empirical second moments computed

using data from 1960 to 2011. Overall, the stylized facts displayed in the table appear to be quite

stable across time. In particular, in both samples the ranking of volatilities is i > y > c > tb/y.

All aggregates are positively serially correlated. However, investment has become much more per-

sistent over time. The trade-balance-to-GDP ratio is slightly countercyclical in the early sample

but slightly procyclical in the recent one. The Canadian economy appears to have become more

volatile, in particular, the volatilities of output and hours worked have increased by 30 and 80

percent, respectively.

Table 4.2 also displays second moments predicted by the the SOE-RBC EDEIR model. Com-

paring the early empirical second moments with their predicted counterparts, it should not come as

a surprise that the model does very well at replicating the volatilities of output, hours, investment,

and the trade-balance-to-output ratio, and the serial correlation of output. For we calibrated the

parameters ω, φ, ψ1, ρ, and η̃ to match these five moments. But the model performs relatively well

along other dimensions. For instance, it correctly implies that consumption is less volatile than

output and investment and more volatile than hours and the trade-balance-to-output ratio. Also,

the model correctly predicts that the trade balance-to-output ratio is countercyclical. This predic-

tion is of interest because the parameters φ and ρ governing the degree of capital adjustment costs

and the persistence of the productivity shock, which, as we established in the previous chapter,

are key determinants of the cyclicality of the trade-balance-to-output ratio, were set independently

of the observed cyclical properties of the trade balance. The model does not perform equally well

at explaining the comovement of the trade balance with output over the more recent sample. Ex-
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Table 4.2: Empirical and Theoretical Second Moments

Canadian Data

Variable 1946 to 1985 1960 to 2011 Model
σxt ρxt,xt−1 ρxt,GDPt σxt ρxt,xt−1 ρxt,GDPt σxt ρxt,xt−1 ρxt,GDPt

y 2.81 0.62 1 3.71 0.86 1 3.08 0.62 1

c 2.46 0.70 0.59 2.19 0.70 0.62 2.71 0.78 0.84
i 9.82 0.31 0.64 10.31 0.69 0.80 9.04 0.07 0.67
h 2.02 0.54 0.80 3.68 0.75 0.78 2.12 0.62 1
tb
y 1.87 0.66 -0.13 1.72 0.76 0.12 1.78 0.51 -0.04
ca
y 1.45 0.32 0.05

Note. Empirical moments for the peirod 1946 to 1985 are taken from Mendoza (1991)
and for the period 1960 to 2011 are based on own calculations using data from WDI

(GDP, consumption, investment, imports, and exports) and Statistics Canada (hours
worked). All empirical second moments based on annual, per capita, and quadratically

detrended data. Standard deviations are measured in percentage points. Theoretical
moments are produced by running the Matlab code edeir run.m.
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ercise 4.8 asks you to use the empirical second moments associated with the 1960-2011 sample to

recalibrate and evaluate the SOE-RBC EDEIR model.

The model overpredicts the correlations of hours with output. In particular, the predicted

correlation is exactly unity. This result is due to the assumed functional form for the period utility

index. To see this, note that equilibrium condition (4.11), which equates the marginal product

of labor to the marginal rate of substitution between consumption and leisure, can be written as

hωt = (1− α)yt. The log-linearized version of this condition is ωĥt = ŷt, which implies that ĥt and

ŷt are perfectly correlated.

Figure 4.1. displays the impulse response functions of a number of variables of interest to a

technology shock of size 1 percent in period 0. In response to this innovation, the model predicts an

expansion in output, consumption, investment, and hours and a deterioration in the trade-balance-

to-output ratio. The level of the trade balance, not shown, also falls on impact. This means that

the initial increase in domestic absorption (i.e., the increase in c0 + i0) is larger than the increase in

output. Further, the initial response of consumption is proportionally smaller than that of output,

whereas the initial response of investment is about eight times as large as that of output. It follows

that in the context of the present SOE-RBC model investment plays a key role in generating a

countercyclical initial response of the trade balance.

4.8 The Role of Persistence and Capital Adjustment Costs

In the previous chapter, we deduced that the negative response of the trade balance to a positive

technology shock was not a general implication of the neoclassical model. In particular, Principles

I and II of the previous chapter state that two conditions must be met for the model to generate a

deterioration in the external accounts in response to a mean-reverting improvement in total factor

productivity. First, capital adjustment costs must not be too stringent. Second, the productivity
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Figure 4.1: Responses to a One-Percent Productivity Shock
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Note. To produce this figure, run the Matlab code edeir run.m.
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Figure 4.2: Response of the Trade-Balance-To-Output Ratio to a Positive Technology Shock
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shock must be sufficiently persistent. To illustrate this conclusion, figure 4.2 displays the impulse

response function of the trade balance-to-GDP ratio to a technology shock of unit size in period

0 under three alternative parameter specifications. The solid line reproduces the benchmark case

from figure ??. The broken line depicts an economy where the persistence of the productivity shock

is half as large as in the benchmark economy (ρ = 0.21). In this case, because the productivity

shock is expected to die out quickly, the response of investment is relatively weak. In addition, the

temporariness of the shock induces households to save most of the increase in income to smooth

consumption over time. As a result, the expansion in aggregate domestic absorption is modest.

At the same time, because the size of the productivity shock is the same as in the benchmark

economy, the initial responses of output and hours are identical in both economies (recall that, by

equation (4.32), ht depends only on kt and At, and that kt is predetermined in period t). The
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combination of a weak response in domestic absorption and an initial response in output that is

independent of the value of ρ, results in an improvement in the trade balance when productivity

shocks are not too persistent.

The crossed line depicts the case of high capital adjustment costs. Here the parameter φ equals

0.084, a value three times as large as in the benchmark case. In this environment, high adjustment

costs discourage firms from increasing investment spending by as much as in the benchmark econ-

omy. As a result, the response of aggregate domestic demand is weaker, leading to an improvement

in the trade balance-to-output ratio.

4.9 The SOE-RBC Model With Complete Asset Markets (CAM)

The SOE-RBC model economy considered thus far features incomplete asset markets. In that

model, agents have access to a single financial asset that pays a non-state-contingent rate of return.

In the model studied in this section, by contrast, agents are assumed to have access to a complete

array of state-contingent claims. As we will see, the introduction of complete asset markets per se

induces stationarity in the equilibrium dynamics, so there will be no need to introduce any ad-hoc

stationarity inducing feature.

Preferences and technologies are as in the EDEIR model. The period-by-period budget con-

straint of the household is given by

Etrt,t+1bt+1 = bt + AtF (kt, ht)− ct − [kt+1 − (1− δ)kt]− Φ(kt+1 − kt), (4.42)

where rt,t+1 is a pricing kernel such that the period-t price of a random payment bt+1 in period

t+ 1 is given by Etrt,t+1bt+1. To clarify the nature of the pricing kernel rt,t+1, define the current
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state of nature as St. Let p(St+1|St) denote the price of a contingent claim that pays one unit of

consumption in a particular state St+1 following the current state St. Then the current price of

a portfolio composed of b(St+1|St) units of contingent claims paying in states St+1 following St is

given by
∑

St+1|St p(S
t+1|St)b(St+1|St). Now let π(St+1|St) denote the probability of occurrence

of state St+1, given information available at the current state St. Multiplying and dividing the

expression inside the summation sign by π(St+1|St) we can write the price of the portfolio as

∑
St+1|St π(St+1|St) p(St+1|St)

π(St+1|St)
b(St+1|St). Now let rt,t+1 ≡ p(St+1|St)/π(St+1|St) be the price of a

contingent claim that pays in state St+1|St scaled by the inverse of the probability of occurrence of

the state in which the claim pays. Also, let bt+1 ≡ b(St+1|St). Then, we can write the price of the

portfolio as
∑

St+1|St π(St+1|St)rt,t+1bt+1. But this expression is simply the conditional expectation

Etrt,t+1bt+1.

Note that Etrt,t+1 is the price in period t of an asset that pays 1 unit of consumption goods in

every state of period t+ 1. It follows that

1 + rt ≡
1

Etrt,t+1

represents the risk-free real interest rate in period t.

Households are assumed to be subject to a no-Ponzi-game constraint of the form

lim
j→∞

Etrt,t+jbt+j ≥ 0, (4.43)

at all dates and under all contingencies. The variable

rt,t+j ≡ rt,t+1rt+1,t+2 · · · rt+j−1,t+j

represents the pricing kernel such that Etrt,t+jbt+j is the period-t price of a stochastic payment
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bt+j in period t+ j. Clearly, rt,t = 1.

To characterize the household’s optimal plan, it is convenient to derive an intertemporal budget

constraint. Begin by multiplying both sides of the sequential budget constraint (4.42) by r0,t. Then

apply the conditional expectations operator E0 to obtain

E0r0,tEtrt,t+1bt+1 = E0r0,t [bt + AtF (kt, ht) − ct − kt+1 + (1− δ)kt − Φ(kt+1 − kt)] .

By the definition of the pricing kernel and the law of iterated expectations, we have thatE0r0,tEtrt,t+1bt+1 =

E0r0,t+1bt+1. So we can write the above expression as

E0r0,t+1bt+1 = E0r0,t [bt +AtF (kt, ht) − ct − kt+1 + (1− δ)kt − Φ(kt+1 − kt)] .

Now sum this expression for t = 0 to t = T > 0. This yields

E0r0,T+1bT+1 = b0 + E0

T∑

t=0

r0,t [AtF (kt, ht) − ct − kt+1 + (1 − δ)kt − Φ(kt+1 − kt)] .

Take limit for T → ∞ and use the no-Ponzi-game constraint (4.43) to obtain

b0 ≥ E0

∞∑

t=0

r0,t [ct + kt+1 − (1 − δ)kt + Φ(kt+1 − kt) −AtF (kt, ht)] . (4.44)

This expression states that the period-0 value of the stream of current and future trade deficits

cannot exceed the value of the initial asset position b0.

The household’s problem consists in choosing contingent plans {ct, ht, kt+1} to maximize the

lifetime utility function (4.1) subject to (4.44), given k0, b0, and exogenous processes {At, r0,t}.
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The Lagrangian associated with this problem is

L = E0

∞∑

t=0

{
βtU(ct, ht) + ξ0r0,t [AtF (kt, ht) − ct − kt+1 + (1− δ)kt − Φ(kt+1 − kt)]

}
+ ξ0b0,

where ξ0 > 0 denotes the Lagrange multiplier on the time-0 present-value budget constraint (4.44).

The first-order conditions associated with the household’s maximization problem are (4.11), (4.18),

(4.44) holding with equality, and

βtUc(ct, ht) = ξ0r0,t. (4.45)

Taking the ratio of this expression to itself evaluated in period t+ 1 yields

βUc(ct+1, ht+1)

Uc(ct, ht)
= rt,t+1,

which says that consumers equate their intertemporal marginal rate of substitution of current

consumption for consumption in a particular state next period to the price of the corresponding

state contingent claim scaled by the probability of occurrence of that state. Rearranging the above

expression, taking expectations conditional on information available in period t, and recalling the

definition of the risk-free interest rate given above yields

Uc(ct, ht) = β(1 + rt)EtUc(ct+1, ht+1),

which is identical to equation (4.7) in the incomplete asset market version of the model. In other

words, the complete asset market model generates a state-by-state version of the Euler equation

implied by the incomplete-asset-market model, reflecting the fact that in the present environment

consumers have more financial instruments available to diversify risk.

We assume that the economy is small and fully integrated to the international financial market.
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Let r∗0,t denote the pricing kernel prevailing in international financial markets. By the assumption

of free capital mobility, we have that domestic asset prices must be equal to foreign asset prices,

that is,

r0,t = r∗0,t (4.46)

for all dates and states. Foreign households are also assumed to have unrestricted access to inter-

national financial markets. Therefore, a condition like (4.45) must also hold abroad. Formally,

βtU∗
c∗(c

∗
t , h

∗
t ) = ξ∗0r

∗
0,t. (4.47)

Note that we are assuming that domestic and foreign households share the same subjective discount

factor, β. Combining (4.45)-(4.47) yields

Uc(ct, ht) =
ξ0
ξ∗0
U∗
c∗(c

∗
t , h

∗
t )

for all dates and states. This expression says that under complete asset markets, the marginal

utility of consumption is perfectly correlated across countries. The ratio ξ0
ξ∗0

reflects differences in

per capita wealth between the domestic economy and the rest of the world. Because the present

model is one of a small open economy, c∗t and h∗t are taken as exogenously given. We endogenize

the determination of c∗t and h∗t in exercise 4.9 at the end of this chapter. This exercise analyzes

a two-country model with complete asset markets in which one country is large and the other is

small.

Because the domestic economy is small, the domestic productivity shock At does not affect the

foreign variables, which respond only to foreign shocks. The domestic economy, however, can be

affected by foreign shocks via c∗t and h∗t . To be in line with the stochastic structure of the EDEIR

model, we shut down all foreign shocks and focus attention only on the effects of innovations in



Open Economy Macroeconomics, Chapter 4 137

domestic productivity. Therefore, we assume that the foreign marginal utility of consumption is

time invariant and given by U∗
c (c∗, h∗), where c∗ and h∗ are constants. Let ψcam ≡ ξ0

ξ∗0
U∗
c∗(c

∗, h∗).

Then, we can rewrite the above expression as

Uc(ct, ht) = ψcam. (4.48)

This expression reflects the fact that, because domestic consmers have access to a complete set of

Arrow-Debreu contingent assets, they can fully diversify domestic risk. Thus, domestic consumers

are exposed only to aggregate external risk. We are assuming that aggregate external risk is nil. As

a result, by appropriately choosing their asset portfolios, domestic consumers can attain a constant

marginal utility of consumption at all times and under all contingencies. Exercise 4.3 at the end

of this chapter studies a version of the present model in which ψcam is stochastic, reflecting the

presence of external shocks.

The competitive equilibrium of the CAM economy is a set of processes {ct, ht, kt+1, At} satisfying

(4.11), (4.12), (4.18), and (4.48), given A0, k0, and the exogenous process {εt}.

The CAM model delivers starionary processes for all variables of interest. This means that

replacing the assumption of incomplete asset markets for the assumption of complete asset mar-

kets eliminates the endogenous random walk problem that plagues the dynamics of the one-bond

economy. The key feature of the complete asset market responsible for its stationarity property is

equation (4.48 ), which states that with complete asset markets the marginal utility of consumption

is constant. By contrast, in the one-bond model, in the absence of any ad-hoc stationarity inducing

feature, the marginal utility of consumption follows a random walk. To see this, set β(1 + rt) = 1

for all t in equation (4.7).

We now wish to shed light on a question that arises often in models with complete asset markets,

namely, what is the current account when financial markets are complete? In the one-bond economy
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the answer is simple: the current account can be measured either by changes in net holdings of

the internationally traded bond or by the sum of the trade balance and net interest income paid

by the single bond. Under complete asset markets, there is a large (possibly infinite) number of

state-contingent financial assets, each with different returns. As a result, it is less clear how to

keep track of the country’s net foeign asset position or of its net investment income. It turns out

that there is a simple way of characterizing and computing the equilibrium level of the current

account. Let us begin by addressing the simpler question of defining the trade balance. As in the

one-bond model, the trade balance in the CAM model is simply given by equation (4.20). The

current account can be defined as the change in the country’s net foreign asset position. Let

st ≡ Etrt,t+1bt+1

denote the net foreign asset position at the end of period t. Then, the current account is given by

cat = st − st−1.

Alternatively, the current account can be expressed as the sum of the trade balance and net in-

vestment income. In turn, net investment income is given by the difference between the payoff in

period t of assets acquired in t − 1, given by bt, and the resources spent in t− 1 on purchases of

contingent claims, given by Et−1rt−1,tbt. Thus, the current account is given by

cat = tbt + bt −Et−1rt−1,tbt.

To see that the above two definitions of the current account are identical, use the definition of the

trade balance, equation (4.20), and the definition of the net foreign asset position st to write the
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Table 4.3: The SOE-RBC Model With Complete Asset Markets: Predicted Second Moments

Variable σxt ρxt,xt−1 ρxt,GDPt

y 3.1 0.61 1.00

c 1.9 0.61 1.00

i 9.1 0.07 0.66

h 2.1 0.61 1.00
tb
y 1.6 0.39 0.13
ca
y 3.1 -0.07 -0.49

Note. Standard deviations are measured in percentage points. Matlab code to produce

this table is available at http://www.columbia.edu/~mu2166/closing.htm.

sequential resource constraint (4.42) as

st = tbt + bt

Subtracting st−1 from both sides of this expression, we have

st − st−1 = tbt + bt −Et−1rt−1,tbt.

The left-hand side of this expression is our first definition of the current account, and the right-hand

side our second definition.

The functions U , F , and Φ are parameterized as in the EDEIR model. The parameters σ, β, ω,

α, φ, δ, ρ, and η̃ take the values displayed in table 4.1. The parameter ψcam is set so as to ensure

that the steady-state levels of consumption in the CAM and EDEIR models are the same.

Table 4.3 displays unconditional second moments predicted by the SOE-RBC model with com-

plete asset markets. The predictions of the model regarding output, consumption, investment, and
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the trade balance are qualitatively similar to those of the (EDEIR) incomplete-asset-market model.

In particular, the model preserves the volatility ranking of output, consumption, investment, and

the trade balance. Also, the domestic components of aggregate demand are all positively serially

correlated and procyclical. Note that the correlation of consumption with output is now unity. This

prediction of the CAM model is a consequence of assuming complete markets and GHH preferences.

Under complete asset markets the marginal utility of consumption is constant over time, so that

up to first order consumption is linear in hours. In turn, with GHH preferences, as we deduced

earlier in this chapter, hours are linearly related to output up to first order. A significant difference

between the predictions of the complete- and incomplete-asset-market models is that the former

implies a highly countercyclical current account, whereas the latter implies an acyclical current

account.

4.10 Alternative Ways to Induce Stationarity

The small open economy RBC model analyzed thus far features a debt-elastic country interest-rate

premium. As mentioned earlier in this chapter, the inclusion of a debt-elastic premium responds to

the need to obtain stationary dynamics up to first order. Had we assumed a constant interest rate,

the linearized equilibrium dynamics would have contained an endogenous random walk component

and the steady state would have depended on initial conditions. Two problems emerge when the

linear approximation possesses a unit root. First, one can no longer claim that when the support

of the underlying shocks is sufficiently small the linear system behaves like the original nonlinear

system, which is ultimately the focus of interest. Second, when the variables of interest contain

random walk elements, it is impossible to compute unconditional first and second moments, such as

standard deviations, serial correlations, correlations with output, etc., which are the most common

descriptive statistics of the business cycle.
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Nonstationarity arises in the small open economy model from three features: an exogenous

cost of borrowing in international financial markets, an exogenous subjective discount factor, and

incomplete asset markets. Accordingly, in this section we study stationarity inducing devises that

consist in altering one of these three features. Our analysis follows closely Schmitt-Grohé and Uribe

(2003), but expands their analysis by including two additional approaches to inducing stationar-

ity, a model with an internal interest-rate premium, a model with perpetually-young consumers,

and a model in which stationarity is induced by approximating the equilibrium using global meth-

ods making agents slightly impatient by making the discount facor β smaller than the pecuniary

discount factor 1/(1 + r∗).

One important question is whether the different stationarity inducing devises affect the predicted

business cycle of the small open economy. A result of this section is that, given a commong

calibration, all models considered deliver similar business cycles.

Before plunging into details, it is important to note that the nature of the non-stationarity

that is present in the small open economy model is different from the one that emerges from the

introduction of non-stationary exogenous shocks. In the latter case, it is typically possible to find a

transformation of variables that renders the model economy stationary in terms of the transformed

variables. We will study an economy with non-stationary shocks and provide an example of a

stationarity inducing transformation in section 5.2 of chapter 5. By contrast, the nonstationarity

that arises in the small open economy model with an exogenous cost of borrowing, an exogenous rate

of time preference, and incomplete markets cannot be eliminated by any variable transformations.

The section proceeds by first presenting and calibrating the different stationarity inducing the-

oretical devises and then comparing the quantitative predictions of the various models.
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4.10.1 Internal Debt-Elastic Interest Rate (IDEIR)

The EDEIR model studied thus far assumes that the country interest-rate premium depends upon

the cross-sectional average of external debt. As a result, households take the country premium as

exogenously given. The model with an internal debt-elastic interest rate assumes instead that the

interest rate faced by domestic agents is increasing in the individual debt position, dt. Consequently,

households internalize the effect that their borrowing choices have on the interest rate they face.

In all other aspects, the IDEIR and EDEIR models are identical.

Formally, in the IDEIR model the interest rate is given by

rt = r∗ + p(dt), (4.49)

where r∗, as before, denotes the world interest rate, but now p(·) is a household-specific interest-rate

premium. Note that the argument of the interest-rate premium function is the household’s own net

debt position. This means that in deciding its optimal expenditure and savings plan, the household

will take into account the fact that a change in its debt position alters the marginal cost of funds.

The only optimality condition that changes relative to the EDEIR model is the Euler equation for

debt accumulation, which now takes the form

Uc(ct, ht) = β[1 + r∗ + p(dt) + p′(dt)dt]EtUc(ct+1, ht+1). (4.50)

This expression features the derivative of the premium with respect to debt because households

internalize the fact that as their net debt increases, so does the interest rate they face in financial

markets. As a result, in the margin, the householdl cares about the marginal cost of borrowing

1 + r∗ + p(dt) + p′(dt)dt and not about the average cost of borrowing, 1 + r∗ + p(dt).

The competitive equilibrium of the IDEIR economy is a set of processes {dt, ct, ht, kt+1, At}
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satisfying (4.11), (4.12), (4.16), (4.18), (4.19), and (4.50), given A0, d−1, and k0, and the process

{εt}.

We assume the same functional forms and parameter values as in the EDEIR model (see sec-

tion 4.3). We note that in the model analyzed here the steady-state level of debt is no longer equal

to d. To see this, recall that β(1+ r∗) = 1 and note that the steady-state version of equation (4.50)

imposes the following restriction on d,

(1 + d)ed−d = 1,

which does not admit the solution d = d, except in the special case in which d = 0. We set

d = 0.7442, which is the value imposed in the EDEIR model. The implied steady-state level of

debt is then given by d = 0.4045212. Intuitively, households internalize that their own debt position

drives up the interest rate, hence they choose to borrow less than households in the EDEIR economy,

who fail to internalize the dependence of the interest rate on the stock of debt. In this sense, one

can say that households in the EDEIR economy overborrow. The fact that the steady-state debt

is lower than d implies that the country premium is negative in the steady state. However, the

marginal country premium, given by p(dt) + p′(dt)dt, is nil in the steady state, as it is in the

EDEIR economy. Recall that in the EDEIR economy, the marginal and average premia perceived

by households are equal to each other and given by p(d̃t). An alternative calibration strategy is

to impose d = d, and to adjust β to ensure that equation (4.50) holds in the deterministic steady

state. In this case, the country premium vanishes in the steady state, but the marginal premium

is positive and equal to ψ1d.
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4.10.2 Portfolio Adjustment Costs (PAC)

In the portfolio adjustment cost (PAC) model, stationarity is induced by assuming that agents face

convex costs of holding assets in quantities different from some long-run level. Preferences and

technology are as in the EDEIR model. However, in contrast to what is assumed in that model,

in the PAC model the interest rate at which domestic households can borrow from the rest of

the world is assumed to be constant and equal to the world interest rate, r∗, that is, the country

premium is nil at all times. The sequential budget constraint of the household is given by

dt = (1 + r∗)dt−1 −AtF (kt, ht) + ct + kt+1 − (1 − δ)kt + Φ(kt+1 − kt) + Ψ(dt), (4.51)

where Ψ(·) is a convex portfolio adjustment cost function satisfying Ψ(d) = Ψ′(d) = 0, for some d.

The first-order conditions associated with the household’s maximization problem are identical to

those associated with the EDEIR model, except that the Euler condition for debt, equation (4.17),

now becomes

Uc(ct, ht) = β
1 + r∗

1 − Ψ′(dt)
EtUc(ct+1, ht+1). (4.52)

This optimality condition implies that the effective interest rate faced by the household, which we

denote rt, is debt elastic and given by

1 + rt =
1 + r∗

1 − Ψ′(dt)
. (4.53)

Because the portfolio adjustment cost function is convex, the effective interest rate is increasing in

the stock of debt. In this regard, the PAC model is a close relative of the EDEIR model, as can be

seen by comparing the above Euler equation with its counterpart in the EDEIR model, given by

equation (4.17).

The specification adopted here assumes that households directly borrow from abroad. This
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setup can be decentralized as follows. Suppose that households face no portfolio adjustment costs

and can borrow and lend at the interest rate rt, which they take as exogenously given and, in

particular, as independent of their own debt positions. Their sequential budget constraint is then

given by d̃t = (1 + rt−1)d̃t−1 − AtF (kt, ht) + ct + kt+1 − (1 − δ)kt + Φ(kt+1 − kt) − Πt, where d̃t

denotes household debt in period t and Πt denotes profit income in period t, which the household

takes as exogenously given. The optimality conditions associated with the household problem are

identical to those in centralized version of the model, except that the Euler equation now becomes

Uc(ct, ht) = β(1 + rt)EtUc(ct+1, ht+1).

Assume that financial transactions between domestic and foreign residents are intermediated by

domestic financial institutions, or banks. Suppose that there is a continuum of banks of measure one

that behave competitively. They capture funds, dt, from foreign investors at the world interest rate

r∗ and lend d̃t to domestic agents at the interest rate rt. Banks face operational costs, Ψ(dt), that

are increasing and convex in the volume of intermediation, dt. Bank profits in period t+1 are given

by Πt+1 ≡ (1 + rt)d̃t − (1 + r∗)dt. Banks are subject to the resource constraint d̃t = dt − Ψ(dt).

The problem of domestic banks is then to choose d̃t and dt to maximize profits subject to the

resource constraint, taking rt as given. The first-order condition associated with the bank’s profit

maximization problem is 1 + rt = 1+r∗

1−Ψ′(dt)
, which is identical to equation (4.53). Each period bank

profits are distributed to domestic households in a lump-sum fashion. Replacing the expression for

bank profits in the household’s budget constraint and using the bank’s resource constraint yields

the budget constraint of the centralized economy, equation (4.51). It follows that the equilibrium

allocations of the centralized and the decentralized economies are the same.

The competitive equilibrium of the PAC economy is a set of processes {dt, ct, ht, kt+1, At} sat-

isfying (4.11), (4.12), (4.18), (4.19), (4.51), and (4.52), given A0, d−1, and k0, and the process

{εt}.
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The world interest rate is assumed to satisfy

β(1 + r∗) = 1.

This assumption implies that in the steady state, the Euler equation (4.52) becomes

Ψ′(d) = 0,

where d denotes the steady-state value of debt. The assumptions imposed on the portfolio adjust-

ment cost Ψ(·) imply that the unique solution to the above expression is d = d. It follows that the

steady-state level of debt is independnet of initial conditions.

We assume a quadratic form for Ψ(·),

Ψ(dt) =
ψ2

2
(dt − d)2,

where ψ2 and d are constant parameters defining the portfolio adjustment cost function. The

remaining functional forms and the calibration of common parameters are as in the EDEIR model.

We calibrate d to 0.7442, which is the same value as in the EDEIR model. This means that the

steady-state values of all endogenous variables are the same in the PAC and EDEIR models. We

set ψ2 at 0.00074, which ensures that the volatility of the current-account-to-output ratio is the

same as in the EDEIR model.

At this point, it might be natural to expect the analysis of an external version of the PAC model

in which the portfolio adjustment cost depends on the aggregate level of debt, d̃t, as opposed to the

individual debt position dt. However, this modification would fail to render the small open economy

model stationary. The reason is that in this case, the optimality condition with respect to debt,

given by equation (4.52) in the PAC model, would become Uc(ct, ht) = β(1 + r∗)EtUc(ct+1, ht+1),
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which, because β(1 + r∗) equals one, implies that the marginal utility of consumption follows a

random walk, and is therefore nonstationary.

4.10.3 External Discount Factor (EDF)

We next study an SOE RBC model in which stationarity is induced by assuming that the subjective

discount factor depends upon endogenous variables. Specifically, we consider a preference specifica-

tion in which the discount factor depends on endogenous variables that are taken as exogenous by

individual households. We refer to this environment as the external discount factor (EDF) model.

Suppose that the discount factor depends on the average per capita levels of consumption and

hours worked. Formally, preferences are described by

E0

∞∑

t=0

θtU(ct, ht) (4.54)

θt+1 = β(c̃t, h̃t)θt t ≥ 0, θ0 = 1; (4.55)

where c̃t and h̃t denote the cross-sectional averages of per capita consumption and hours, respec-

tively, which the individual household takes as exogenously given.

In the EDF model, the interest rate is assumed to be constant and equal to r∗. The sequential

budget constraint of the household therefore takes the form

dt = (1 + r∗)dt−1 − AtF (kt, ht) + ct + kt+1 − (1− δ)kt + Φ(kt+1 − kt), (4.56)

and the no-Ponzi-game constraint simplifies to limj→∞(1 + r∗)−jEtdt+j ≤ 0.

The first-order conditions associated with the household’s maximization problem are (4.11),

(4.56), and

Uc(ct, ht) = β(c̃t, h̃t)(1 + r∗)EtUc(ct+1, ht+1) (4.57)
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Uc(ct, ht)[1+Φ′(kt+1−kt)] = β(c̃t, h̃t)EtUc(ct+1, ht+1)
[
At+1Fk(kt+1, ht+1) + 1− δ + Φ′(kt+2 − kt+1)

]

(4.58)

lim
j→∞

Et
dt+j

(1 + r∗)j
= 0. (4.59)

In equilibrium, individual and average per capita levels of consumption and effort are identical.

That is,

ct = c̃t (4.60)

and

ht = h̃t. (4.61)

A competitive equilibrium is a set of processes {dt, ct, ht, c̃t, h̃t, kt+1, At} satisfying (4.11), (4.12),

and (4.56)-(4.61), given A0, d−1, and k0 and the stochastic process {εt}.

We evaluate the model using the same functional forms for the period utility function, the

production function, and the capital adjustment cost function as in the EDEIR model. We assume

that the subjective discount factor is of the form

β(c, h) =

(
1 + c− hω

ω

)−ψ3

,

with ψ3 > 0, so that increases in consumption or leisure make households more impatient.

To see that in the EDF model the steady-state level of debt is determined independently of

initial conditions, start by noticing that in the steady state, equation (4.57) implies that

β(c, h)(1 + r∗) = 1,

where c and h denote the steady-state values of consumption and hours. Next, notice that, given

this result, the steady-state values of hours, capital (k), and output (kαh1−α) can be found in



Open Economy Macroeconomics, Chapter 4 149

exactly the same way as in the EDEIR model, with β replaced by (1 + r∗)−1. Notice that k and

h depend only on the deep structural parameters r∗, α, ω, and δ. With h in hand, the above

expression delivers c, which depends only on the deep structural parameters defining h and on ψ3.

Finally, in the steady state, the resource constraint (4.56) implies that the steady state level of

debt, d, is given by d = (c+ δk − kαh1−α)/r∗, which depends only on structural parameters.

The EDF model features one new parameter relative to the EDEIR model, namely the elasticity

of the discount factor relative to the composite 1+ ct−hωt /ω. We set ψ3 to ensure that the steady-

state trade-balance-to-output ratio equals 2 percent, in line with the calibration of the EDEIR

model. The implied value of ψ3 is 0.11.

Note that in our assumed specification of the endogenous discount factor, the parameter ψ3

governs both the steady-state trade-balance-to-output ratio and the stationarity of the equilibrium

dynamics. This dual role may create a conflict. On the one hand, one may want to set ψ3 at a small

value so as to ensure stationarity without affecting the predictions of the model at business-cycle

frequency. On the other hand, matching the observed average trade-balance-to-output ratio might

require a value of ψ3 that does affect the behavior of the model at business-cycle frequency. For

this reason, it might be useful to consider a two-parameter specification of the discount factor, such

as β(ct, ht) = (ψ̃3 + ct − ω−1hωt )−ψ3 , where ψ̃3 > 0 is a parameter. With this specification, one

can fix the parameter ψ3 at a small value, just to ensure stationarity, and set the parameter ψ̃3 to

match the observed trade-balance-to-output ratio.

4.10.4 Internal Discount Factor (IDF)

Consider now a variation of the EDF model in which the subjective discount factor depends on the

individual levels of consumption and hours worked rather than on the aggregate levels. Specifically,
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suppose that preferences are given by equation (4.54), with the following law of motion for θt:

θt+1 = β(ct, ht)θt t ≥ 0, θ0 = 1. (4.62)

This preference specification was conceived by Uzawa (1968) and introduced in the small-open-

economy literature by Mendoza (1991). Under these preferences, households internalize that their

choices of consumption and leisure affect their valuations of future period utilities.

Households choose processes {ct, ht, kt+1, dt, θt+1}∞t=0 so as to maximize the utility function (4.54)

subject to the sequential budget constraint (4.56), the law of motion of the discount factor (4.62),

and the same no-Ponzi constraint as in the EDF economy. Let θtλt denote the Lagrange multiplier

associated with (4.56) and θtηt the Lagrange multiplier associated with (4.62). The first-order

conditions associated with the household’s maximization problem are (4.56), (4.59), and

λt = β(ct, ht)(1 + rt)Etλt+1 (4.63)

Uc(ct, ht)− ηtβc(ct, ht) = λt (4.64)

− Uh(ct, ht) + ηtβh(ct, ht) = λtAtFh(kt, ht) (4.65)

ηt = −EtU(ct+1, ht+1) +Etηt+1β(ct+1, ht+1) (4.66)

λt[1 + Φ′(kt+1 − kt)] = β(ct, ht)Etλt+1

[
At+1Fk(kt+1, ht+1) + 1− δ + Φ′(kt+2 − kt+1)

]
(4.67)

These first-order conditions are fairly standard, except for the fact that the marginal utility of

consumption is not given simply by Uc(ct, ht) but rather by Uc(ct, ht)−βc(ct, ht)ηt. The second term

in this expression reflects the fact that an increase in current consumption lowers the discount factor

(βc < 0). In turn, a unit decline in the discount factor reduces utility in period t by ηt. Intuitively,
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−ηt equals the expected present discounted value of utility from period t + 1 onward. To see

this, iterate the first-order condition (4.66) forward to obtain ηt = −Et
∑∞

j=1

(
θt+j
θt+1

)
U(ct+j, ht+j).

Similarly, the marginal disutility of labor is not simply Uh(ct, ht) but instead Uh(ct, ht)−βh(ct, ht)ηt.

The competitive equilibrium of the IDF economy is a set of processes {dt, ct, ht, kt+1, ηt, λt, At}

satisfying (4.12), (4.56), (4.59), and (4.63)-(4.67), given the initial conditions A0, d−1, and k0 and

the exogenous process {εt}.

We pick the same functional forms as in the EDF model. The fact that both the period utility

function and the discount factor have a GHH structure implies that, as in all versions of the SOE

RBC model considered thus far, the marginal rate of substitution between consumption and leisure

depends only on hours worked and is independent of consumption. This yields the, by now familiar,

equilibrium condition hω−1
t = AtFh(kt, ht).

The steady state of the IDF economy is the same as that of the EDF economy. To see this, note

that in the steady state, (4.63) implies that β(c, h)(1 + r∗) = 1, which also features in the EDF

model. Also, in the steady state, equation (4.67) yields an expression for the capital-labor ratio

that is the same as in all versions of the SOE RBC model considered thus far. Finally, the fact that

the labor supply schedule and the sequential budget constraint are identical in the EDF and IDF

models, implies that h, c, and d are also equal across the two models. This shows that the IDF

model delivers a steady-sate value of debt that is independent of initial conditions. Of course, the

IDF model includes the variable ηt, which does not feature in the EDF model. The steady-state

value of this variable is given by −U(c, h)/r∗.

Finally, we assign the same values to the structural parameters as in the EDF model.

4.10.5 The Model With No Stationarity Inducing Features (NSIF)

For comparison with the models studied thus far, we now consider a version of the small open

economy RBC model featuring no stationarity inducing features. In this model (a) the discount
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factor is constant; (b) the interest rate at which domestic agents borrow from the rest of the world

is constant (and equal to the subjective discount rate, β(1+ r∗) = 1); (c) agents face no frictions in

adjusting the size of their asset portfolios; and (d) markets are incomplete, in the sense that domestic

households have only access to a single risk-free international bond. Under this specification, the

deterministic steady state of consumption depends on the assumed initial level of net foreign debt.

Also, up to first order, the equilibrium dynamics contain a random walk component in variables

such as consumption, the trade balance, and net external debt.

A competitive equilibrium in the nonstationary model is a set of processes {dt, ct, ht, kt+1, At}

satisfying (4.11), (4.12), (4.18), (4.56), (4.59), and the consumption Euler equation

Uc(ct, ht) = β(1 + r∗)EtUc(ct+1, ht+1),

given d−1, k0, A0, and the exogenous process {εt}.

It is clear from the above consumption Euler equation that in the present model the marginal

utility of consumption follows a random walk (recall that β(1+r∗) = 1). This property is transmit-

ted to consumption, debt, and the trade balance. Also, because the above Euler equation imposes

no restriction in the deterministic steady state, the steady-state values of consumption, debt, and

the trade balance are all indeterminate. The model does deliver unique deterministic steady-state

values for kt and ht. We calibrate the parameters σ, r∗, ω, α, φ, δ, ρ, and η̃ using the values

displayed in tables 4.1.

4.10.6 The Perpetual-Youth Model (PY)

In this subsection, we present an additional way to induce stationarity in the small open economy

RBC model. It is a discrete-time, stochastic, small-open-economy version of the perpetual-youth

model due to Blanchard (1985). Cardia (1991) represents an early adoption of the perpetual-youth
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model in the context of a small open economy. Our model differs from Cardia’s in that we assume

a preference specification that allows for an exact aggregation of this model. Our strategy avoids

the need to resort to linear approximations prior to aggregation.

The Basic Intuition

The basic intuition behind why the assumption of finite lives by itself helps to eliminate the unit

root in the aggregate net foreign asset position can be seen from the following simple example.

Consider an economy in which debt holdings of individual agents follow a pure random walk of

the form ds,t = ds,t−1 + µt. Here, ds,t denotes the net debt position at the end of period t of

an agent born in period s, and µt is an exogenous shock common to all agents and potentially

serially correlated. This is exactly the equilibrium evolution of debt we obtained in the quadratic-

preference, representative-agent economy of chapter 2, see equation (??). We now depart from

the representative-agent assumption by introducing a constant and age-independent probability of

death at the individual level. Specifically, assume that the population is constant over time and

normalized to unity. Each period, individual agents face a probability 1 − θ ∈ (0, 1) of dying. In

addition, to keep the size of the population constant over time, we assume that 1 − θ agents are

born each period. Assume that those agents who die leave their outstanding debts unpaid and that

newborns inherit no debts. Adding the left- and right-hand sides of the law of motion for debt

over all agents alive in period t—i.e., applying the operator (1− θ)
∑−∞

s=t θ
t−s on both sides of the

expression ds,t = ds,t−1 + µt—yields dt = θdt−1 + µt, where dt denotes the aggregate debt position

in period t. In performing the aggregation, recall that dt,t−1 = 0, because agents are born free of

debts. Clearly, the resulting law of motion for the aggregate level of debt is mean reverting at the

survival rate θ. The key difference with the representative agent model is that here each period a

fraction 1 − θ of the stock of debt simply disappears.

In what follows, we embed this basic stationarity result into the small-open-economy real-
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business-cycle model.

Households

Each agent maximizes the utility function

−1

2
E0

∞∑

t=0

(βθ)t(xs,t − x)2

with

xs,t = cs,t −
hωs,t
ω
, (4.68)

where cs,t and hs,t denote consumption and hours worked in period t by an agent born in period s.

The parameter β ∈ (0, 1) represents the subjective discount factor, and x is a parameter denoting

a satiation point. The symbol Et denotes the conditional expectations operator over aggregate

states. Following the preference specification used in all of the models studied in this chapter, we

assume that agents derive utility from a quasi-difference between consumption and leisure. But we

depart from the preference specifications used earlier in this chapter by assuming a quadratic period

utility index. As will become clear shortly, this assumption is essential to achieve aggregation in

the presence of aggregate uncertainty.

Financial markets are incomplete. Domestic consumers can borrow internationally by means of

a bond paying a constant real interest rate. The debts of deceased domestic consumers are assumed

to go unpaid. Foreign agents are assumed to lend to a large number of domestic consumers so that

the fraction of unpaid loans due to death is deterministic. To compensate foreign lenders for

these losses, domestic consumers pay a constant premium over the world interest rate. Specifically,

the gross interest rate at which domestic consumers borrow internationally is (1 + r∗)/θ, where

r∗ denotes the world interest rate. Domestic agents can also lend internationally. The lending

contract stipulates that should the domestic lender die, the foreign borrower is relieved of his debt
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obligations. Since foreing borrowers can perfectly diversify their loans across dometic agents, they

pay a deterministic interest rate. To eliminate pure arbitrage opportunities, domestic consumers

must lend at the rate (1 + r∗)/θ. It follows that the gross interest rate on the domestic consumer’s

asset position (whether this position is positive or negative) is given by (1 + r∗)/θ.

The budget constraint of a domestic consumer born in period s ≤ t is

ds,t =

(
1 + r∗

θ

)
ds,t−1 + cs,t − πt −wths,t, (4.69)

where πt and wt denote, respectively, profits received from the ownership of stock shares and the

real wage rate. To facilitate aggregation, we assume that agents do not trade shares and that the

shares of the dead are passed to the newborn in an egalitarian fashion. Thus, share holdings are

identical across agents. Agents are assumed to be subject to the following no-Ponzi-game constraint

lim
j→∞

Et

(
θ

1 + r∗

)j
ds,t+j ≤ 0. (4.70)

The first-order conditions associated with the agent’s maximization problem are (4.68), (4.69),

(4.70) holding with equality, and

− (xs,t − x) = λs,t, (4.71)

hω−1
s,t = wt, (4.72)

and

λs,t = β(1 + r∗)Etλs,t+1. (4.73)

Note that hs,t is independent of s (i.e., it is independent of the agent’s birth date). This means
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that we can drop the subscript s from hs,t and write

hω−1
t = wt. (4.74)

Use equations (4.68) and (4.72) to eliminate cs,t from the sequential budget constraint (4.69). This

yields

ds,t =

(
1 + r∗

θ

)
ds,t−1 − πt −

(
1− 1

ω

)
wtht + x+ (xs,t − x).

To facilitate notation, we introduce the auxiliary variable

zt ≡ πt +

(
1 − 1

ω

)
wtht − x, (4.75)

which is the same for all generations s because both profits and hours worked are independent of

the age of the cohort. Then the sequential budget constraint becomes

ds,t =

(
1 + r∗

θ

)
ds,t−1 − zt + (xs,t − x). (4.76)

Now iterate this expression forward, apply the Et operator, and use the transversality condition

(i.e., equation (4.70) holding with equality), to obtain

(
1 + r∗

θ

)
ds,t−1 = Et

∞∑

j=0

(
θ

1 + r∗

)j
[zt+j − (xs,t+j − x)] .

Using equations (4.71) and (4.73) to replace Etxs,t+j yields

(
1 + r∗

θ

)
ds,t−1 = Et

∞∑

j=0

(
θ

1 + r∗

)j
zt+j −

β(1 + r∗)2

β(1 + r∗)2 − θ
(xs,t − x).
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Solve for xs,t to obtain

xs,t = x+
β(1 + r∗)2 − θ

βθ(1 + r∗)
(z̃t − ds,t−1), (4.77)

where

z̃t ≡
θ

1 + r∗
Et

∞∑

j=0

(
θ

1 + r∗

)j
zt+j

denotes the weighted average of current and future expected values of zt. It can be expressed

recursively as

z̃t =
θ

1 + r∗
zt +

θ

1 + r∗
Etz̃t+1. (4.78)

We now aggregate individual variables by summing over generations born at time s ≤ t. Notice

that at time t there are alive 1 − θ people born in t, (1− θ)θ people born in t− 1, and, in general,

(1 − θ)θs people born in period t− s. Let

xt ≡ (1 − θ)

−∞∑

s=t

θt−sxs,t

and

dt ≡ (1 − θ)

−∞∑

s=t

θt−sds,t

denote the aggregate levels of xs,t and ds,t, respectively. Now multiply (4.77) by (1 − θ)θt−s and

then sum for s = t to s = −∞ to obtain the following expression for the aggregate version of

equation (4.77):

xt = x+
β(1 + r∗)2 − θ

βθ(1 + r∗)
(z̃t − θdt−1). (4.79)

In performing this step, keep in mind that dt,t−1 = 0. That is, consumers are born debt free.

Finally, aggregate the first-order condition (4.71) and the budget constraint(4.76) to obtain

− (xt − x) = λt (4.80)
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and

dt = (1 + r∗)dt−1 − zt + xt − x, (4.81)

where

λt ≡ (1− θ)

−∞∑

s=t

θt−sλs,t.

denotes the cross-sectional average of marginal utilities of consumption.

Firms Producing Consumption Goods

We assume the existence of competitive firms that hire capital and labor services to produce con-

sumption goods. These firms maximize profits, which are given by

AtF (kt, ht) − wtht − utkt,

where the function F and the productivity factor At are as in the EDEIR model. The first-order

conditions associated with the firm’s profit-maximization problem are

AtFk(kt, ht) = ut (4.82)

and

AtFh(kt, ht) = wt. (4.83)

We assume perfect competition in product and factor markets. Because F is homogeneous of degree

one, firms producing consumption goods make zero profits.
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Firms Producing Capital Goods

We assume the existence of firms that buy consumption goods to transform them into investment

goods, rent out capital, and pay dividends, πt. Formally, dividends in period t are given by

πt = utkt − it − Φ(kt+1 − kt). (4.84)

The evolution of capital follows the law of motion given in (4.4), which we reproduce here for

convenience

kt+1 = (1− δ)kt + it. (4.85)

The optimization problem of the capital producing firm is dynamic. This is because investment

goods take one period to become productive capital and because of the presence of adjustment

costs. The firm must maximize some present discounted value of current and future expected

profits. A problem that emerges at this point is what discount factor should the firm use. This

issue does not have a clear answer for two reasons: first, the owners of the firm change over time.

Recall that the shares of the dead are distributed in equal parts among the newborn. It follows

that the firm cannot use as its discount factor the intertemporal marginal rate of substitution of

a ‘representative household.’ For the representative household does not exist. Second, the firm

operates in a financial environment characterized by incomplete asset markets. For this reason, it

cannot use the price of state-contingent claims to discount future profits. For there is no market

for such claims.

One must therefore introduce assumptions regarding the firm’s discounting behavior. These

assumptions will in general not be innocuous with respect to the dynamics of capital accumulation.

With this in mind, we will assume that the firm uses the discount factor βjλt+j/λt to calculate

the period-t value of one unit of consumption delivered in a particular state of period t+ j. Note
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that this discount factor uses the average marginal utility of consumption of agents alive in period

t+ j relative to the average marginal utility of consumption of agents alive in period t. Note that

we use as the subjective discount factor the parameter β and not βθ. This is because the number

of shareholders is constant over time (and equal to unity), unlike the size of a cohort born at a

particular date, which declines at the mortality rate 1 − θ. The Lagrangian associated with the

optimization problem of capital goods producers is then given by

L = Et

∞∑

j=0

βj
λt+j
λt

[ut+jkt+j − kt+j+1 + (1 − δ)kt+j − Φ(kt+j+1 − kt+j)] .

The first-order condition with respect to kt+1 is

λt[1 + Φ′(kt+1 − kt)] = βEtλt+1

[
ut+1 + 1 − δ + Φ′(kt+2 − kt+1)

]
. (4.86)

Equilibrium

Equations (4.74), (4.75), (4.78)-(4.86) form a system of eleven equations in eleven unknowns: xt,

λt, ht, wt, ut, πt, it, kt, dt, zt, z̃t. Here, we reproduce the system of equilibrium conditions for

convenience:

hω−1
t = wt,

zt ≡ πt +

(
1 − 1

ω

)
wtht − x,

z̃t =
θ

1 + r∗
zt +

θ

1 + r∗
Etz̃t+1,

xt = x+
β(1 + r∗)2 − θ

βθ(1 + r∗)
(z̃t − θdt−1),

−(xt − x) = λt,
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dt = (1 + r∗)dt−1 − zt + xt − x,

AtFk(kt, ht) = ut,

AtFh(kt, ht) = wt,

πt = utkt − it − Φ(kt+1 − kt),

kt+1 = (1− δ)kt + it,

λt[1 + Φ′(kt+1 − kt)] = βEtλt+1

[
ut+1 + 1 − δ + Φ′(kt+2 − kt+1)

]
.

It is of interest to consider the special case in which β(1 + r∗) = 1. In this case, the evolution

of external debt is given by dt = θdt−1 + (1 + r∗ − θ)/θz̃t − zt. This expression shows that the

stock of debt does not follow a random walk as was the case in the representative-agent economy

with quadratic preferences of chapter 2. In fact, the (autoregressive) coefficient on past external

debt is θ ∈ (0, 1). The mean reverting property of aggregate external debt obtains in spite of the

fact that individual debt positions follow a random walk. The reason why the aggregate level of

external debt is trend reverting in equilibrium is the fact that each period a fraction 1 − θ ∈ (0, 1)

of the agents die and are replaced by newborns holding no financial assets. As a result, on average,

the current aggregate level of debt is only a fraction θ of the previous period’s level of debt. This

intuition also goes through when β(1 + r∗) 6= 1, although in this case individual levels of debt

display a trend in the deterministic equilibrium.

In the deterministic steady state, the aggregate level of debt is given by

d =
θ(1 − β(1 + r∗))

(1 + r∗ − θ)(θ − β(1 + r∗))
y

In the special case in which β(1 + r∗) equals unity, the steady-state aggregate stock of debt is nil.
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This is because in this case agents, all of whom are born with no debts, wish to hold constant debt

levels over time. In this case, the steady state both the aggregate and the individual levels of debt

are zero. It can be shown that if β(1 + r∗) is less than unity but larger than θ, the steady-state

level of debt must be positive.

We adopt the same functional forms for F and Φ as in the EDEIR model. We calibrate ω, α, φ,

δ, ρ, β and η̃ at the values displayed in tables 4.1. Consequently, the steady-state values of hours,

capital, output, investment, consumption, and the trade balance are the same as in the EDEIR

model. We set θ = 1 − 1/75, which implies a life expectancy of 75 years. Finally, we calibrate r∗

and x to ensure that in the steady state the trade-balance-to-output ration is 2 percent and the

degree of relative risk aversion, given by −x/(x − x), is 2. This calibration results in an interest

rate of 3.7451 percent and a satiation point of 0.6334.

4.10.7 Quantitative Results

Table 4.4 displays a number of unconditional second moments of interest implied by the IDF, EDF,

EDEIR, IDEIR, PAC, CAM, and PY models. The NSIF model is nonstationary up to first order,

and therefore does not have well defined unconditional second moments. The second moments

for all models other than the IDEIR and PY models are taken from Schmitt-Grohé and Uribe

(2003). We compute the equilibrium dynamics by solving a log-linear approximation to the set

of equilibrium conditions. The Matlab computer code used to compute the unconditional second

moments and impulse response functions for all models presented in this section is available at

www.columbia.edu/~mu2166/closing.htm.

Table 4.4 shows that regardless of how stationarity is induced, the model’s predictions regarding

second moments are virtually identical. One noticeable difference arises in the CAM model, the

complete markets case, which, as might be expected, predicts less volatile consumption. The

low volatility of consumption in the complete markets model introduces a difference between the

www.columbia.edu/~mu2166/closing.htm
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Table 4.4: Second Moments Across Models

IDF EDF IDEIR EDEIR PAC CAM PY

Volatilities:

std(yt) 3.1 3.1 3.1 3.1 3.1 3.1 3.1

std(ct) 2.3 2.3 2.5 2.7 2.7 1.9 2.5

std(it) 9.1 9.1 9 9 9 9.1 8.7

std(ht) 2.1 2.1 2.1 2.1 2.1 2.1 2.1

std( tbtyt ) 1.5 1.5 1.6 1.8 1.8 1.6 1.5

std( catyt ) 1.5 1.5 1.4 1.5 1.5 3.1 1.3

Serial Correlations:

corr(yt, yt−1) 0.61 0.61 0.62 0.62 0.62 0.61 0.62

corr(ct, ct−1) 0.7 0.7 0.76 0.78 0.78 0.61 0.74

corr(it, it−1) 0.07 0.07 0.068 0.069 0.069 0.07 0.064

corr(ht, ht−1) 0.61 0.61 0.62 0.62 0.62 0.61 0.62

corr( tbtyt ,
tbt−1

yt−1
) 0.33 0.32 0.43 0.51 0.5 0.39 0.34

corr( catyt ,
cat−1

yt−1
) 0.3 0.3 0.31 0.32 0.32 -0.07 0.29

Correlations with Output:

corr(ct, yt) 0.94 0.94 0.89 0.84 0.85 1 0.94

corr(it, yt) 0.66 0.66 0.68 0.67 0.67 0.66 0.69

corr(ht, yt) 1 1 1 1 1 1 1

corr( tbtyt , yt) -0.012 -0.013 -0.036 -0.044 -0.043 0.13 -0.06

corr( catyt , yt) 0.026 0.025 0.041 0.05 0.051 -0.49 0.04

Note. Standard deviations are measured in percent per year. IDF = Internal Discount

Factor; EDF = External Discount Factor; IDEIR = Internal Debt-Elastic Interest Rate;

EDEIR = External Debt-Elastic Interest Rate; PAC = Portfolio Adjustment Costs;

CAM = Complete Asset Markets; PY = Perpetual Youth Model. Parts of the table are

reproduced from Schmitt-Grohé and Uribe (2003).
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predictions of this model and those of the IDF, EDF, EDEIR, IDEIR, PAC, and PY models:

Because consumption is smoother in the CAM model, its role in determining the cyclicality of the

trade balance is smaller. As a result, the CAM model predicts that the correlation between output

and the trade balance is positive, whereas the models featuring incomplete asset markets all imply

that this correlation is negative.

Figure 4.3 demonstrates that all of the models being compared imply virtually identical impulse

response functions to a technology shock. Each panel shows the impulse response of a particular

variable in the eight models. For all variables, the impulse response functions are so similar that

to the naked eye the graph appears to show just a single line. Again, the only small and barely

noticeable difference is given by the responses of consumption and the trade-balance-to-GDP ratio

in the complete markets model. In response to a positive technology shock, consumption increases

less when markets are complete than when markets are incomplete. This in turn, leads to a smaller

decline in the trade balance in the period in which the technology shock occurs.

4.10.8 Inducing Stationarity Through Impatience and Global Solutions

Thus far, we have approximated the SOE-RBC model using a first-order local approximation around

the deterministic steady state. Here, we approximate the equilibrium using a global method. We

assume that both the subjective and pecuniary discount factors are constant. To induce stationarity,

we assume that households are slightly more impatient than indicated by the pecuniary discount

factor, that is, we assume that

β(1 + r∗) < 1.

In all other respects, the model is exactly as the baseline SOE model of section 4.1. The above

restriction eliminates the random walk in debt and consumption. To understand why, assume first

that the economy is deterministic. In such an environment, the condition β(1 + r∗) < 1 induces
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Figure 4.3: Impulse Response to a Unit Technology Shock Across Models
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households to accumulate debt in such a way that consumption approaches asymptotically its low-

est possible level, given by the disutility of labor, hω/ω. Thus, debt converges to a well-defined

value given by the present discounted value of the stream of output, AF (k, h), net of capital de-

preciation, δk, and consumption, hω/ω, that is, d→ [AF (k, h)− δk−hω/ω]/r∗, where all variables

are evaluated at their asymptotic values. Of course, at the limit the household is infinitely un-

happy. Thus, when uncertainty is introduced, in the form of stochastic variations in the technology

shock A, precautionary savings create a well-defined debt distribution to the left of its asymptotic

deterministic level. Since this precautionary savings motive cannot be captured by a first-order

approximation, it follows that a higher-order approximation, like the global approximation pursued

here, is needed to obtain a stationary solution.

The solution algorithm is based on value function iterations over a discretized state space.

Specifically, we write the model as the solution to the Bellman equation

v(d, k, A) = max
{d′, k′}

{
U

(
AF (k, h) + (1 − δ)k − k′ − Φ(k′ − k) + d′ − (1 + r∗)d− hω

ω

)
+ βE[v(d′, k′, A′)|A]

}

subject to

d′ ≤ d,

where variables without a subscript or a superscript are dated in period t and primed variables are

dated in t+ 1. The debt constraint places a limit to the level of net external debt, defined by the

parameter d. When d is set to a large number so that the debt constraint is never binding the debt

constraint serves only as a no-Ponzi-game restriction. But, as it will become clear shortly, a more

stringent debt limit is needed for the predictions of the model to be in line with the data. The

online materials for this chapter provide the transition probability matrix of the exogenous shock

A (file tpm.mat) and the MATLAB script to compute the value function and the associated policy

functions (file vfi.m).
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Table 4.5: Calibration of the Discount Factor and the Debt Limit

Description β β(1 + r∗) d̄ E(tb/y) σi
Chosen Calibration 0.954 0.9922 1 2.9 8.7

Natural Debt Limit 0.954 0.9922 9.95 25.8 21.40
High Patience 0.96 0.9984 1 2.6 9.9

Data 2.0 9.8

Note. r∗ = 0.04.

We use the same functional forms for preferences, technologies and adjustment costs as in

previous sections and calibrate all parameters, except β and d, as shown in table 4.1. We discretize

the state space with 9 equally spaced points for lnA from -0.04495 to 0.04495, 70 equally spaced

points for d, and 30 equally spaced points for k. The ranges assigned to the two endogenous states,

d and k, depend on the values assigned to β and d, as explained below.

Setting β(1 + r∗) too close to unity results in a near random walk distribution of debt in

equilibrium, which is difficult to approximate. We therefore set β(1 + r∗) equal to 0.9922, which,

recalling that r∗ = 0.04, requires setting β equal to 0.954. This value of β introduces a significant

difference of 82 basis points between the subjective and the pecuniary discount rates.

Consider first the case in which the debt limit d̄ is set to a large number so that the borrowing

constraint is never binding in equilibrium. Specifically we set the range of d to be [7.45, 9.95].

The grid for k is [2.8,3.8]. The top-left panel of figure 4.4 displays the equilibrium probability

distribution of d. The probability of debt being equal to its upper limit of 9.95 is zero, which

implies that the debt limit is never binding in equilibrium. However, the implied average level of

external debt, equal to 9.6, turns out to be excessive. Table 4.5 explains why. It shows that in

order to support such a high level of debt the economy must generate a trade balance surplus of

25.8 percent of GDP, more than 10 times larger than the one observed in Canada, the economy to

which the model is calibrated. Under this calibration, the model is at odds with the data along
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Figure 4.4: Probability Distribution of Debt Under Impatience and a Global Approximation

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
d̄ = 1 and β(1 + r∗) = 0.9922

d

7.5 8 8.5 9 9.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
d̄ = 9.95 and β(1 + r∗) = 0.9922

d
0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25
d̄ = 1 and β(1 + r∗) = 0.9984

d

Note. r∗ = 0.04.



Open Economy Macroeconomics, Chapter 4 169

other dimensions as well. For instance, the table shows that the predicted volatility of investment

is 21.4 percent, more than twice what it is in the data. The intuition why investment is so volatile

is that at high levels of external debt, the intertemporal marginal rate of consumption substitution

U ′(c′−h′ω/ω)/U ′(c−hω/ω) becomes highly volatile. Recall that this variable represents the kernel

households use to discount future returns to capital (see equations (4.8) and (4.10)). In turn, the

reason why the intertemporal marginal rate of consumption substitution is highly volatile is that

consumption is close to its minimum possible level, given by the disutility of labor hω/ω. When

c− hω/ω is close to zero, the marginal utility of consumption becomes highly sensitive to changes

in c or h.

It follows that a tighter limit on external debt is in order. Accordingly, we set d to 1. As

shown in table 4.5, this value is low enough to induce an average trade-balance-to-output ratio

close to the observed value of 2 percent. The table also shows that with the tighter debt limit, the

model improves significantly in explaining the observed volatility of investment (9.8 in the data

versus 8.7 in the model). Indeed, the model does a pretty good job at explaining other second

moments of interest as well. Table 4.6 displays the standard deviation, serial correlation, and

correlation with output of output, consumption, investment, hours, the trade-balance-to-output

ratio and the current-account-to-output ratio. For comparison, the table reproduces form table 4.2

the corresponding empirical moments and those implied by the EDEIR model.

The main message of the table is that the model with impatient agents solved using global

methods performs as well as the EDEIR model solved with local approximation methods except

for the serial correlation of the trade-balance-to-output ratio, which is better captured by the log-

linearized EDEIR model. A similar result emerges from figure 4.5, displaying impulse responses to

a positive productivity shock. Comparing this figure with figure 4.3, shows that the response of the

model with impatient households obtained via a global approximation is similar to that obtained

under local approximations and alternative stationarity inducing mechanisms.
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Figure 4.5: Impulse Responses to a Positive Productivity Shock Under a Global Approximation
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Table 4.6: Model Predictions Under A Global Approximation

Variable Data Global Solution EDEIR
σxt ρxt,xt−1 ρxt,GDPt σxt ρxt,xt−1 ρxt,GDPt σxt ρxt,xt−1 ρxt,GDPt

y 2.81 0.62 1 3.56 0.68 1 3.08 0.62 1

c 2.46 0.70 0.59 2.96 0.77 0.98 2.71 0.78 0.84
i 9.82 0.31 0.64 8.70 0.09 0.69 9.04 0.07 0.67

h 2.02 0.54 0.80 2.44 0.68 1 2.12 0.62 1
tb
y 1.87 0.66 -0.13 1.23 -0.46 -0.04 1.78 0.51 -0.04
ca
y 1.21 -0.47 0.05 1.45 0.32 0.05

Note. In the global solution β(1+r∗) takes the value 0.9922 and d̄ is equal to 1. Second
moments are computed using the program vfi.m available with the online materials for

this chapter. For second moments predicted by the EDEIR model and for empirical
second moments, see the note to table 4.2.

Finally, we note that the predictions implied by the global approximation are robust to a wide

range of values of β. Table 4.5 shows that both the trade-balance-to-output ratio and the volatility

of investment are little changed if β is raised to 0.96, a value quite close to 1/(1 + r∗) = 0.9615.

This value might be empirically appealing because it implies a lower frequency of events in which

the debt limit binds, 22 percent with β = 0.96 versus 31 percent at the baseline value of 0.954

(compare the top-right and the bottom panels of figure 4.4).
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4.11 Appendix: First-Order Accurate Approximations to Dynamic

General Equilibrium Models

In this appendix, we solve the system

fy′Etŷt+1 + fy ŷt + fx′Etx̂t+1 + fxx̂t (4.41)

reproduced from section 4.6. The matrices fy′ , fy, fx′ , and fx are assumed to be known. Letting

A = [fx′ fy′ ] and B = −[fx fy], we can rewrite the system as

A



Etx̂t+1

Etŷt+1


 = B



x̂t

ŷt


 .

Define the vector ŵt containing all control and state variables of the system. Formally

ŵt+j ≡ Et



x̂t+j

ŷt+j




for j ≥ 0. Note that this definition implies that

ŵt ≡



x̂t

ŷt


 .

We can then write the linear system as

Aŵt+1 = Bŵt.
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In accordance with (4.40), we seek solutions in which

lim
j→∞

ŵt+j = 0. (4.87)

This requirement means that at every point in time the vector wt is expected to converge to its

non-stochastic steady state, w ≡ [x′ y′]′.

The remainder of this section is based on Klein (2000) (see also Sims, 1996). Consider the

generalized Schur decomposition of A and B:

qAz = a

and

qBz = b,

where a and b are upper triangular matrices and q and z are orthonormal matrices. Recall that a

matrix a is said to be upper triangular if elements in row i and column j, denoted a(i, j) are 0 for

i > j. A matrix z is orthonormal if z′z = zz′ = I .

Define

st ≡ z′ŵt.

Then we have that

ast+1 = bst.

The ratio b(i, i)/a(i, i) is known as the generalized eigenvalue of the matrices A and B. Assume,

without loss of generality, that the ratios |b(i, i)/a(i, i)| are increasing in i. Now partition a, b, z,
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ŵt, and st as

a =



a11 a12

∅ a22


 , b =



b11 b12

∅ b22


 ; z =



z11 z12

z21 z22


 ; ŵt =



ŵ1
t

ŵ2
t


 , st =



s1t

s2t


 ,

where a11 and b11 are square matrices whose diagonals generate the generalized eigenvalues of

(A,B) with absolute values less than one, and a22 and b22 are square matrices whose diagonals

generate the generalized eigenvalues of (A,B) with absolute values greater than one. Then we have

that

a22s
2
t+1 = b22s

2
t .

The partition of the matrix B guarantees that all diagonal elements of b22 are nonzero. In addition,

recalling that a triangular matrix is invertible if the elements along its main diagonal are nonzero,

it follows, that b22 is invertible. So we can write

b−1
22 a22s

2
t+1 = s2t .

By construction, the eigenvalues of b−1
22 a22 are all less than unity in modulus. To arrive at this

conclusion, we use three properties of upper triangular matrices: (a) the inverse of a nonsingular

upper triangular matrix is upper triangular; (b) the product of two upper triangular matrices is

upper triangular; and (c) the eigenvalues of an upper triangular matrix are the elements of its main

diagonal. It follows that the only nonexplosive solution to the above difference equation is

s2t =
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for all t. This result, and the definition of s2t imply that

z′12ŵ
1
t + z′22ŵ

2
t = 0.

Solving this expression for ŵ2
t yields

ŵ2
t = Gŵ1

t , (4.88)

where

G ≡ −z′22
−1
z′12. (4.89)

The invertibility of z′22 follows from the fact that, being orthonormal, z′ itself is invertible. The

condition s2t = 0 for all t also implies that

a11s
1
t+1 = b11s

1
t .

The criteria used to partition A and B guarantee that the diagonal elements of the upper triangular

matrix a11 are nonzero. Therefore, a11 is invertible, which allows us to write

s1t+1 = a−1
11 b11s

1
t . (4.90)

Now express s1t as a linear transformation of ŵ1
t as follows:

s1t = z′11ŵ
1
t + z′21ŵ

2
t

= (z′11 + z′21G)ŵ1
t

= (z′11 − z′21z
′
22

−1
z′12)ŵ

1
t

= z−1
11 ŵ

1
t
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The second and third equalities make use of equation (4.88) and identity (4.89), respectively. The

last equality follows from the fact that z is orthonormal.4

Combining this expression with (4.90) yields

ŵ1
t+1 = Hŵ1

t ,

where

H ≡ z11a
−1
11 b11z

−1
11 .

Finally, note that all eigenvalues ofH are inside the unit circle. To see this note that the eigenvalues

of z11a
−1
11 b11z

−1
11 must be same as the eigenvalues of a−1

11 b11. In turn a−1
11 b11 is upper triangular with

diagonal elements less than one in modulus.

4.12 Appendix: Local Existence and Uniqueness of Equilibrium

The analysis thus far has not delivered the matrices hx and gx that define the first-order accurate

solution of the DSGE model. In this section, we accomplish this task and derive conditions under

which the equilibrium dynamics are locally unique.

4To see this, let k ≡ z′11 − z′21z
′

22
−1
z′12. We with to show that k = z−1

11 . Note that the orthonormality of z implies
that

I = z′z =

»
z′11z11 + z′21z21 z′11z12 + z′21z22
z′12z11 + z′22z21 z′12z12 + z′22z22

–
.

Use element (2, 1) of z′z to get z′12z11 = −z′22z21. Pre-multiply by z′22
−1

and post multiply by z−1
11 to get z′22

−1
z′12 =

−z21z11
−1. Use this expression to eliminate z′22

−1
z′12 from the definition of k to obtain k = [z′11 + z′21z21z11

−1]. Now
use element (1, 1) of z′z to write z′21z21 = I − z′11z11. Using this equation to eliminate z′21z21 from the expression in
square brackets, we get k = [z′11 + (I − z′11z11)z11

−1], which is simply z−1
11 . Finally, note that the invertibility of z11

follows from the invertibility of z.
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4.12.1 Local Uniqueness of Equilibrium

Suppose that the number of generalized eigenvalues of the matrices A and B with absolute value

less than unity is exactly equal to the number of states, nx. That is, suppose that a11 and b11 are of

size nx× nx. In this case, the matrix H is also of size nx×nx, and the matrix G is of size ny ×nx.

Moreover, since ŵ1
t must be comformable with H , we have that ŵ1

t is given by the first nx elements

of ŵt, which exactly coincide with x̂t. In turn, this implies that ŵ2
t must equal ŷt. Defining

hx ≡ H

and

gx ≡ G,

we can then write

x̂t+1 = hxx̂t

and

ŷt = gxx̂t,

which is the solution we were looking for. Notice that because x̂t is predetermined in period t, we

have that ŷt and x̂t+1 are uniquely determined in period t. The evolution of the linearized system

is then unique and given by

yt − y = gx(xt − y)

xt+1 − x = hx(xt − x) + ηεt+1,

where we have set σ at the desired value of 1.

Summarizing, the condition for local uniqueness of the equilibrium is that the number of gen-
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eralized eigenvalues of the matrices A and B is exactly equal to the number of states, nx.

4.12.2 No Local Existence of Equilibrium

Now suppose that the number of generalized eigenvalues of the matrices A and B with absolute

value less than one is smaller than the number of state variables, nx. Specifically, suppose that a11

and b11 are of size (nx −m) × (nx −m), with 0 < m ≤ nx. In this case, the matrix H is of order

(nx −m) × (nx −m) and the matrix G is of order (ny +m)× (nx −m). Moreover, the vectors ŵ1
t

and ŵ2
t no longer coincide with x̂t and ŷt, respectively. Instead, ŵ1

t and ŵ2
t take the form

ŵ1
t = x̂at

ŵ2
t =



x̂bt

ŷt


 ,

where x̂at and x̂bt are vectors of lengths nx −m and m, respectively, and satisfy

x̂t =



x̂at

x̂bt


 ,

The law of motion of x̂t and ŷt is then of the form

x̂at+1 = Hx̂at

and 

x̂bt

ŷt


 = Gx̂at
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This expression states that x̂bt is determined by x̂at . But this is impossible, because x̂at and x̂bt

are predetermined independently of each other. We therefore say that locally there exists no

equilibrium.

Summarizing, no local equilibrium exists if the number of generalized eigenvalues of the matrices

A and B with absolute values less than one is smaller than the number of state variables, nx.

4.12.3 Local Indeterminacy of Equilibrium

Finally, suppose that the number of generalized eigenvalues of the matrices A and B with absolute

value less than one is larger than the number of state variables, nx. Specifically, suppose that a11

and b11 are of size (nx +m) × (nx +m), with 0 < m ≤ ny. In this case, the matrix H is of order

(nx +m) × (nx + m) and the matrix G is of order (ny −m) × (nx + m). The vectors ŵ1
t and ŵ2

t

take the form

ŵ1
t =



x̂t

ŷat


 ,

ŵ2
t = ŷbt

where ŷat and ŷbt are vectors of lengths m and ny −m, respectively, and satisfy

ŷt =



ŷat

ŷbt


 ,

The law of motion of x̂t and ŷt is then of the form



x̂t+1

ŷat+1


 = H



x̂t

ŷat



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and

ŷbt = G



x̂t

ŷat




These expressions state that one can freely pick ŷat in period t. Since ŷat is not predetermined, the

equilibrium is indeterminate. In this case, we say that the indeterminacy is of dimension m. The

evolution of the system can then be written as




xt+1 − x

yat+1 − yass


 = H




xt − x

yat − yass


+



η ∅

νε νµ






εt+1

µt+1




and

ybt − ybss = G




xt − x

yat − yass


 ,

where the matrices νε and νµ allow for nonfundamental uncertainty, and µt is an i.i.d. innovation

with mean ∅ and variance covariance matrix equal to the identity matrix.

Summarizing, the equilibrium displays local indeterminacy of dimension m if the number of

generalized eigenvalues of the matrices A and B with absolute values less than one exceeds the

number of state variables, nx, by 0 < m ≤ ny.

4.13 Appendix: Second Moments

Start with the equilibrium law of motion of the deviation of the state vector with respect to its

steady-state value, which is given by

x̂t+1 = hxx̂t + σηεt+1, (4.91)



Open Economy Macroeconomics, Chapter 4 181

Covariance Matrix of xt

Let

Σx ≡ Ex̂tx̂
′
t

denote the unconditional variance/covariance matrix of x̂t and let

Σε ≡ σ2ηη′.

Then we have that

Σx = hxΣxh
′
x + Σε.

We will describe two numerical methods to compute Σx.

Method 1

One way to obtain Σx is to make use of the following useful result. Let A, B, and C be matrices

whose dimensions are such that the product ABC exists. Then

vec(ABC) = (C′ ⊗ A) · vec(B),

where the vec operator transforms a matrix into a vector by stacking its columns, and the symbol

⊗ denotes the Kronecker product. Thus if the vec operator is applied to both sides of

Σx = hxΣxh
′
x + Σε,
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the result is

vec(Σx) = vec(hxΣxh
′
x) + vec(Σε)

= F vec(Σx) + vec(Σε),

where

F = hx ⊗ hx.

Solving the above expression for vec(Σx) we obtain

vec(Σx) = (I −F )−1vec(Σε)

provided that the inverse of (I − F ) exists. The eigenvalues of F are products of the eigenvalues

of the matrix hx. Because all eigenvalues of the matrix hx have by construction modulus less than

one, it follows that all eigenvalues of F are less than one in modulus. This implies that (I −F ) is

nonsingular and we can indeed solve for Σx. One possible drawback of this method is that one has

to invert a matrix that has dimension n2
x × n2

x.

Method 2

The following iterative procedure, called doubling algorithm, may be faster than the one described

above in cases in which the number of state variables (nx) is large.

Σx,t+1 = hx,tΣx,th
′
x,t + Σε,t

hx,t+1 = hx,thx,t

Σε,t+1 = hx,tΣε,th
′
x,t + Σε,t
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Σx,0 = I

hx,0 = hx

Σε,0 = Σε

Other second moments

Once the covariance matrix of the state vector, xt has been computed, it is easy to find other second

moments of interest. Consider for instance the covariance matrix Ex̂tx̂
′
t−j for j > 0. Let µt = σηεt.

Ex̂tx̂
′
t−j = E[hjxx̂t−j +

j−1∑

k=0

hkxµt−k]x̂
′
t−j

= hjxEx̂t−jx̂
′
t−j

= hjxΣx

Similarly, consider the variance covariance matrix of linear combinations of the state vector xt. For

instance, the co-state, or control vector yt is given by yt = y + gx(xt − x), which we can write as:

ŷt = gxx̂t. Then

Eŷtŷ
′
t = Egxx̂tx̂

′
tg

′
x

= gx[Ex̂tx̂
′
t]g

′
x

= gxΣxg
′
x

and, more generally,

Eŷtŷ
′
t−j = gx[Ex̂tx̂

′
t−j ]g

′
x

= gxh
j
xΣxg

′
x,
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for j ≥ 0.

4.14 Appendix: Impulse Response Functions

The impulse response to a variable, say zt in period t+ j to an impulse in period t is defined as:

IR(zt+j) ≡ Etzt+j −Et−1zt+j

The impulse response function traces the expected behavior of the system from period t on given

information available in period t, relative to what was expected at time t − 1. Using the law of

motion Etx̂t+1 = hxx̂t for the state vector, letting x denote the innovation to the state vector in

period 0, that is, x = ησε0, and applying the law of iterated expectations we get that the impulse

response of the state vector in period t is given by

IR(x̂t) ≡ E0x̂t −E−1x̂t = htx[x0 − E−1x0] = htx[ησε0] = htxx; t ≥ 0.

The response of the vector of controls ŷt is given by

IR(ŷt) = gxh
t
xx.

4.15 Appendix: Matlab Code For Linear Perturbation Methods

The program gx_hx.m computes the matrices gx and hx using the Schur decomposition method.

The program mom.m computes second moments. The program ir.m computes impulse response

functions.
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4.16 Exercises

Exercise 4.1 (Variation of the Portfolio Adjustment Cost Model) This exercise aims at

establishing whether formulating portfolio adjustment costs as a function of the deviation of the

household’s debt position from an exogenous reference point, dt − d̄, or as a function of the change

in its debt position, dt − dt−1, has consequences for the stationarity of the model.

Consider a small open economy populated by a large number of infinitely lived households with

preferences described by the utility function

E0

∞∑

t=0

βt ln ct,

where β ∈ (0, 1) denotes the subjective discount factor and ct denotes consumption in period t. Each

period, households receive an exogenous and stochastic endowment, yt, and can borrow (or lend to)

international financial markets at the gross interest rate 1 + r. Let dt denote the stock of foreign

debt held by households at the end of period t. Households are subject to a portfolio adjustment cost

of the form φ
2 (dt − dt−1)

2, where φ is a positive constant. Assume that β(1 + r) = 1.

1. State the household’s period by period budget constraint.

2. State the household’s utility maximization problem

3. Write the Lagrangian of the household’s problem

4. Define a competitive equilibrium of this economy.

5. Suppose the endowment is non-stochastic and constant, yt = y for all t. Characterize the

deterministic steady state. Does it exist? Is it unique?

6. Consider now a temporary endowment shock. Suppose y0 > y and yt = y for all t > 0

deterministically. Suppose that prior to period 0 the economy was in a deterministic steady
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state with d−1 = d∗. Is the economy stationary, that is, is dt expected to return d∗? Provide

intuition.

Exercise 4.2 (Variation of the EDF Model) This exercise analyzes the local stability of the

equilibrium of the SOE-EDF model when the household’s subjective discount factor is assumed to

be increasing in aggregate consumption, θ′(ct) > 0, as opposed to decreasing, as is assumed in the

baseline specification presented in section 4.10.3.

Consider a small open economy populated by infinitely-lived agents. Let ct denote consumption

in period t. Assume that the discount factor, denoted βt, evolves over time according to βt+1 =

θ(ct)βt. Assume that the function θ is positive and bounded above by unity. Agents have access to

international financial markets where they can borrow or lend at the interest rate r > 0. Agents

choose consumption and external debt, dt so as to maximize lifetime utility given by
∑∞

t=0 βtU(ct),

where U(.) is an increasing and strictly concave function. Agents are endowed with y > 0 units of

goods each period. Agents enter period 0 with a stock d−1 of net foreign debt. Assume that β0 = 1.

Assume that households are subject to some borrowing constraint that prevents them from engaging

in Ponzi schemes. Assume that agents fail to internalize that their consumption choices affect their

discount factor.

1. Characterize the competitive equilibrium of this economy.

2. Characterize the steady state of this economy. Consider the following two cases: (A.) θ is

strictly increasing in c and (B.) θ is strictly decreasing in c. What properties does the function

θ(.) need to have in each case to ensure existence of a steady state. What properties does the

function θ need to have in each case to ensure that the steady state is unique. Provide an

intuitive explanation for your results by comparing them to those you would obtain in an

economy in which θ(.) is independent of ct. Which case, (A.) or (B.) is more plausible to you

and why?
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3. Characterize the local stability of the economy in a small neighborhood around the steady state.

Specifically, suppose that d−1 is not equal to the steady state, under what conditions (on the

function θ) does there exist a unique perfect foresight equilibrium converging back to the steady

state.

4. Assume now, contrary to what was assumed above, that agents internalize that their own

consumption choice in period t changes the discount factor, that is, they internalize that θ

depends on ct.

Characterize the competitive equilibrium of this economy. Give an intuitive explanation for

the differences in equilibrium conditions in the economy with and without internalization.

5. Characterize the steady state of this economy. Does it exist? Is it unique? Is it the same as

in the economy without internalization?

6. Characterize the local stability of the steady state. Specifically, suppose that d−1 is not equal

but close to its steady state value. Under what conditions does there exist a unique perfect

foresight equilibrium converging back to the steady state. Express your answer in terms of a

condition involving the parameter r and the following four elasticities, εθ ≡ θ′(c)c
θ(c) , εθθ ≡ θ′′(c)c

θ′(c) ,

εc ≡ U ′(c)c
U (c) and εcc ≡ U ′′(c)c

U ′(c) , evaluated at the steady state value of ct. Discuss how your result

differs from that obtained in question 3 above.

Exercise 4.3 [Business Cycles in a Small Open Economy with Complete Asset Markets

and External Shocks]

Consider the small open economy model with complete asset markets (CAM) studied in this

chapter. Suppose that the productivity factor At is constant and normalized to 1. Replace the
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equilibrium condition Uc(ct, ht) = ψcam with the expression

Uc(ct, ht) = xt,

where xt is an exogenous and stochastic random variable, which can be interpreted as an external

shock. Assume that the external shock follows a process of the form

x̂t = ρx̂t−1 + εt; εt ∼ N (0, σ2
ε ),

where x̂t ≡ ln(xt/x) and x denotes the non-stochastic steady-state level of xt. Let ρ = 0.9 and

σε = 0.02. Calibrate all other parameters of the model following the calibration of the CAM model

presented in the main body of this chapter. Finally, set the steady state value of xt in such a way

that the steady-state level of consumption equals the level of steady-state consumption in the version

of the CAM model studied in the main text.

1. Produce a table displaying the unconditional standard deviation, serial correlation, and cor-

relation with output of ŷt, ĉt, ît, ĥt, and tbt/yt.

2. Produce a figure with 5 plots depicting the impulse responses to an external shock (a unit

innovation in εt) of ŷt, ĉt, ît, ĥt, and tbt/yt.

3. Now replace the values of ρ and σε given above with values such that the volatility and serial

correlation of output implied by the model are the same as those reported for the Canadian

economy in table 4.2. Answer questions 4.3.a and 4.3.b using these new parameter values.

4. Based on your answer to the previous question, evaluate the ability of external shocks (as

defined here) to explain business cycles in Canada.
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Exercise 4.4 (A Small Open Economy with an AR(2) TFP Process) In this question you

are asked to show that the SOE-RBC model can predict consumption to be more volatile than out-

put when the productivity shock follows a second-order autoregressive process displaying a hump-

shaped impulse response. The theoretical model to be used is the External Debt-Elastic Interest Rate

(EDEIR) model presented in section 4.1.1 of the current chapter. Replace the AR(1) process with

the following AR(2) specification:

lnAt+1 = 1.42 lnAt − 0.43 lnAt−1 + εt+1,

where εt is an i.i.d. random variable with mean zero and standard deviation σε > 0. Scale σε to en-

sure that the predicted standard deviation of output is 3.08, the value predicted by the AR(1) version

of this model. Otherwise use the same calibration and functional forms as presented in the chapter.

Download the matlab files for the EDEIR model from http://www.columbia.edu/~mu2166/closing.htm .

Then modify them to accommodate the present specification.

1. Produce a table displaying the unconditional standard deviation, serial correlation, and cor-

relation with output of output, consumption, investment, hours, the trade-balance-to-output

ratio, and the current-account-to-output ratio.

2. Produce a 3 × 2 figure displaying the impulse responses of output, consumption, investment,

hours, the trade-balance-to-output ratio, and TFP to a unit innovation in TFP.

3. Compare and contrast the predictions of the model under the AR(1) and the AR(2) TFP

processes. Provide intuition.

Exercise 4.5 (Durable Consumption I) Consider a SOE model with non-durable and durable

consumption goods. Let cN,t denote consumption of non-durables in period t and cD,t purchases of

durables in period t. The stock of durable consumer goods, denoted st, is assumed to evolve over
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time as st = (1 − δ)st−1 + cD,t, where δ ∈ (0, 1] denotes the depreciation rate of durable goods.

Households have preferences over consumption, ct, of the form
∑∞

t=0 β
tU(ct), where U is increasing

in consumption and concave. Consumption, ct, is a composite of nondurable consumption and the

service flow provided by the stock of consumer durables. Specifically, assume that

ct =

[
(1 − α)

1
η c

1− 1
η

N,t + α
1
η s

1− 1
η

t

] 1

1− 1
η ,

η > 0, and α ∈ (0, 1). Households have access to an internationally traded risk-free one-period

bond, which pays the interest rate rt when held between periods t and t + 1. The relative price of

durables in terms of nondurables is one. The household is subject to a borrowing limit that prevents

it from engaging in Ponzi schemes. Output, denoted yt, is produced with capital according to a

production function of the form yt = F (kt), where kt denotes physical capital. The capital stock

evolves over time as kt+1 = (1 − δk)kt + it, where it denotes investment in period t and δk is the

depreciation rate on physical capital.

1. Describe the household’s budget set.

2. State the optimization problem of the household.

3. Present the complete set of equilibrium conditions.

4. The interest rate is constant over time and equal to rt = r = β−1 − 1. Assume that up

to period −1 in the economy was in a steady state equilibrium in which all variables were

constant and d = d̄ > 0, where d denotes net external debt in the steady state.

Find the share of expenditures on durables in total consumption expenditures in the steady

state in terms of the parameters δ, r, α, and η. Suggest a strategy for calibrating those four

parameters.
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5. Assume that in period 0 the economy unexpectedly receives a positive income shock as a con-

sequence of the rest of the world forgiving part of the country’s net foreign debt. Assume that

the positive income shock results in a one percent increase in the consumption of nondurables

in period 0. Find the percent increase in purchases of durables and in total consumption

expenditures in period 0. Compare your answer to the one you would have obtained if all

consumption goods were nondurable.

6. Continuing to assume that consumption of nondurables increased by one percent, find the

change in the trade balance in period 0 expressed as a share of steady state consumption ex-

penditures. Is the response of the trade balance countercyclical? Compare your findings to

those you would have obtained if all consumption goods were nondurable. How much amplifi-

cation is there due to the presence of durables.

Exercise 4.6 (Durable Consumption II) Consider an economy populated by a large number of

identical households with preferences described by the lifetime utility function

E0

∞∑

t=0

βt

[(
cnt − hωt

ω

)
sγt

]1−σ
− 1

1 − σ
,

where cnt denotes consumption of nondurable goods, ht denotes hours worked, and st denotes the

stock of durable consumption goods. The parameter β ∈ (0, 1) denotes the subjective discount

factor, γ, (ω − 1), (σ − 1) > 0 are preference parameters, and Et denotes the expectations operator

conditional on information available in period t.

The law of motion of the stock of durables is assumed to be of the form

st = (1− δ)st−1 + cdt ,



192 June 13, 2015, M. Uribe and S. Schmitt-Grohé

where cdt denotes durable consumption in period t, and δ ∈ (0, 1) denotes the depreciation rate. The

sequential budget constraint of the household is given by

dt = (1 + rt−1)dt−1 + cnt + cdt +
φd

2
(st − st−1)

2 + it +
φk

2
(kt+1 − kt)

2 −Atk
α
t h

1−α
t ,

where dt denotes debt acquired in period t and maturing in period t + 1, rt denotes the interest

rate on assets held between periods t and t + 1, it denotes gross investment, kt denotes the stock

of physical capital, and At represents a technology factor assumed to be exogenous and stochastic.

The parameters φd, φk > 0 govern the degree of adjustment costs in the accumulation of durable

consumption goods and physical capital, respectively. The parameter α resides in the interval (0, 1).

The capital stock evolves over time according to the law of motion

kt+1 = (1− δ)kt + it.

Note that we assume that physical capital, kt, is predetermined in period t and that investment,

it, takes one period to become productive capital. By contrast, the stock of consumer durables, st

is non-predetermined in period t, and expenditures in consumer durables in period t, cdt , become

productive immediately. Finally, assume that the interest rate is debt elastic,

rt = r∗ + ψ
[
e

edt−d̄ − 1
]
,

where d̃t denotes the cross-sectional average level of debt per capita, and r∗, d̄, and ψ are parameters.

The productivity factor At evolves according to the expression

lnAt+1 = ρ lnAt + εt+1,
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where εt is a white noise with mean zero and variance σ2
ε , and ρ ∈ (0, 1) is a parameter. Assume

that β(1 + r∗) = 1.

1. Derive the complete set of equilibrium conditions.

2. Derive the deterministic steady state. Specifically, find analytical expressions for the steady

state values of cnt , ht, st, kt+1, dt, rt, it, tbt, and cat in terms of the structural parameters of

the model σ, β, δ, ω, α, γ, r∗, and d̄. Here, tbt and cat denote, respectively, the trade balance

and the current account.

3. Assume the following parameter values: σ = 2, δ = 0.1, r∗ = 0.04, α = 0.3, and ω = 1.455.

Calibrate d̄ and γ so that in the steady state the debt to output ratio is 25 percent and the

nondurable consumption to output ratio is 68 percent. Report the implied numerical values of

γ and d̄. Also report the numerical steady state values of rt, dt, ht, kt, c
n
t , st, c

d
t , it, tbt, cat,

and yt ≡ Atk
α
t h

1−α
t .

4. Approximate the equilibrium dynamics using a first-order perturbation technique. In per-

forming this approximation, express all variables in logs, except for the stock of debt, the

interest rate, the trade balance, the current account, the trade-balance-to-output ratio, and

the current-account-to-output ratio. You are asked to complete the calibration of the model

by setting values for ψ, φd, φk, ρ, and σε to target key empirical regularities of medium-size

emerging countries documented in chapter 1 of Uribe’s Open Economy Macroeconomics text-

book. Specifically, the targets are a standard deviation of output, σy, of 8.99 percent, a relative

standard deviation of consumption, σc/σy, of 0.93, a relative standard deviation of gross in-

vestment, σi/σy, of 2.86, a serial correlation of output of 0.84, and a correlation between

the trade-balance-to-output ratio and output of -0.24. In general, you will not be able to hit

these targets exactly. Instead, you are required to define a distance between the targets and
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their corresponding theoretical counterparts and devise a numerical algorithm to minimize it.

Define the distance as follows. Let z(ψ, φd, φk, ρ, σε) ≡ x(ψ, φd, φk, ρ, σε)−x∗, where x∗ is the

5x1 vector of empirical targets (the 5 numbers given above) and x(ψ, φd, φk, ρ, σε) is the 5x1

vector of theoretical counterparts as a function of the parameters. Let D(ψ, φd, φk, ρ, σε) ≡
√
z(ψ, φd, φk, ρ, σε)′z(ψ, φd, φk, ρ, σε) be the distance between the target and its theoretical

counterpart. Report (a) the values of ψ, φd, φk, ρ, and σε that you find and (b) complete the

following table:

Data Prediction of the Model

σy 8.99

σc/σy 0.93

σi/σy 2.86

corr(yt, yt−1) 0.84

corr(tbt/yt, yt) -0.24

5. Produce a table displaying the model predictions. The table should contain the unconditional

standard deviation, correlation with output, and the first-order serial correlation of output,

consumption, investment, consumption of durables, consumption of nondurables, the trade-

balance-to-output ratio, and the current-account-to-output ratio. For consumption, consump-

tion of durables, consumption of nondurables, and investment report the standard deviation

relative to output. Discuss how well the model is able to explain actual observed second mo-

ments that were not targeted in the calibration. Use the second moments reported in table 1.2

of Uribe’s textbook to compare the model’s predictions to actual data.

Exercise 4.7 (Complete Markets and The Countercyclicality of the Trade Balance) Consider

a small open economy with access to a complete array of internationally traded state contingent

claims. There is a single good, which is freely traded internationally. Let rt,t+1 denote the period
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t price of a contingent claim that pays one good in a particular state of the world in period t + 1

divided by the probability of occurrence of that state. The small open economy takes the process for

rt,t+1 as exogenously given.

Households have preferences over consumption, ct, and hours, ht, given by

E0

∞∑

t=0

βt




(
ct − hωt

ω

)1−σ
− 1

1− σ


 ; σ, ω > 1,

where E0 denotes the expectations operator conditional on information available in period 0. House-

holds produce goods according to the following production technology

Atk
α
t h

1−α
t ,

where At denotes an exogenous productivity factor, kt denotes the capital stock in period t, and

the parameter α ∈ (0, 1) denotes the elasticity of the production function with respect to capital.

Domestic households are the owners of physical capital. The evolution of capital is given by

kt+1 = (1− δ)kt + it,

where it denotes investment in physical capital in period t and δ ∈ (0, 1) denotes the depreciation

rate. In period 0, households are endowed with k0 units of capital and hold contingent claims

(acquired in period −1) that pay d0 goods in period 0.

1. State the household’s period-by-period budget constraint.

2. Specify a borrowing limit that prevents household’s from engaging in Ponzi schemes.

3. State the household’s utility maximization problem. Indicate which variables/processes the
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household chooses and which variables/processes it takes as given.

4. Derive the complete set of competitive equilibrium conditions.

5. Let x̂t ≡ lnxt/x denote the percent deviation of a variable from its non-stochastic steady

state value. Assume that in the non-stochastic steady state r0,t = βt and At = 1. Show

that in response to a positive innovation in technology in period t, Ât > 0, the trade balance

will respond countercyclically only if the response in investment in period t is positive. Then

find the minimum percent increase in investment in period t required for the trade balance

to decline in period t in response to the technology shock. To answer this question use a

first-order accurate approximation to the solution of the model. Show that your answer is

independent of the expected future value of At+1.

6. Compare and contrast your findings in the previous item to the ones derived in chapter 3

for a model with capital accumulation, no depreciation, no capital adjustment costs, inelastic

labor supply, and incomplete markets. In particular, discuss how in that model the sign of the

impulse response of the trade balance to a positive innovation in the technology shock, Ât > 0,

depended on the persistence of the technology shock. Give an intuitive explanation for the

similarities/differences that you identify.

7. Now find the size of EtÂt+1 relative to the size of Ât that guarantees that the trade balance

deteriorates in period t in response to a positive innovation in At in period t. Your answer

should be a condition of the form Ât < MEtÂt+1, where M is a function of the structural

parameters of the model. In particular, it is a function of α, β, δ, and ω. Find the value of

M for α = 1/3, δ = 0.08, β−1 = 1.02, and ω = 1.5.

8. Discuss to which extend your findings support or contradict Principle I, derived in chapter 3,

which states that: “The more persistent are productivity shocks, the more likely is the trade
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balance to experience an initial deterioration in response to a positive technology shock.”

9. How would your answers to questions 5 and 7 change if the period utility function was sepa-

rable in consumption, ct, and hours, ht?

Exercise 4.8 [Calibrating the EDEIR Model Using Canadian Data Over the Period

1960-2011] In section 4.5, we calibrated the EDEIR model using second moments computed using

Canadian data over the period 1946-1985. The middle panel of table 4.2 updates the empirical

second moments to the period 1960 to 2011. The present exercise uses these empirical regularities

to calibrate and evaluate the SOE-RBC model.

1. Calibrate the EDEIR model as follows: Set β = 1/1.04, σ = 2, ω = 1.455, α = 0.32, δ = 0.10,

and d = 0.7442. Set the remaining four parameters, ρ, η, φ, and ψ1 to match the observed

standard deviations and serial correlations of output and the standard deviations of investment

and the trade-balance-to-output ratio in Canada over the period 1960-2011. Approximate the

equilibrium dynamics up to first order and use a distance minimization procedure similar to

the one used in exercise 4.6. Compare the resulting values for ρ, η, φ, and ψ1 with those

reported in table 4.1.

2. Compute theoretical second moments and present your findings as in the third panel of ta-

ble 4.2.

3. Comment on the ability of the model to explain observed business cycles in Canada over the

period 1960-2011.

4. Compute the unconditional standard deviation of the productivity shock, lnAt under the

present calibration. Compare this number to the one corresponding to the 1946-1985 cali-

bration presented in section 4.5. Now do the same with the standard deviation of output.

Discuss and interpret your findings.
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Exercise 4.9 (A Model of the U.S.-Canada Business Cycle) Consider a world with two economies,

Canada and the United States, indexed by i = Can, US, respectively. Suppose that both economies

are populated by a large number of identical households with preferences given by

E0

∞∑

t=0

βt

[
cit − (hit)

ω

ω

]1−σ
− 1

1 − σ
,

where cit and hit denote, respectively, consumption and hours worked in country i in period t. In

both countries, households operate a technology that produces output, denoted yit, using labor and

capital, denoted kit. The production technology is Cobb-Douglas and given by

yit = Ait(k
i
t)
α(hit)

1−α,

where Ait denotes a productivity shock in country i, which evolves according to the following AR(1)

process:

lnAit+1 = ρi lnAit + ηiεit+1,

where εit is an i.i.d. innovation with mean zero and variance equal to one, and ρi and ηi are

country-specific parameters. Both countries produce the same good. The evolution of capital obeys

the following law of motion:

kit+1 = kit +
1

φi

[(
iit
δkit

)φi
− 1

]
δkit,

where iit denotes investment in country i, and φi is a country-specific parameter.

Assume that asset markets are complete and that there exists free mobility of goods and financial

assets between the United States and Canada, but that labor and installed capital are immobile across

countries. Finally, assume that Canada has measure zero relative to the United States, so that the
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latter can be modeled as a closed economy.

Consider the business cycle regularities for Canada for the period 1960 to 2011 shown in exer-

cise 4.8. The following table displays observed standard deviations, serial correlations, and correla-

tions with output for the United States over the period 1960-2011. The source is World Development

Indicators. The data are annual and in per capita terms. The series y, c, and i are in logs, and the

series tb/y is in levels. All series were quadratically detrended. Standard deviations are measured

in percentage points.

Variable U.S. Data 1960-2011

σxt ρxt,xt−1 ρxt,GDPt

y 2.94 0.75 1.00

c 3.00 0.82 0.90

i 10.36 0.67 0.80

tb/y 0.94 0.79 -0.51

1. Calibrate the model as follows: Assume that the deterministic steady-state levels of consump-

tion per capita are the same in Canada and the United States. Set β = 1/1.04, σ = 2,

ω = 1.455, α = 0.32, and δ = 0.10. Set the remaining six parameters, ρi, ηi, and φi, for

i = Can, US, to match the observed standard deviations and serial correlations of output

and the standard deviations of investment in Canada and the United States. Use a distance

minimization procedure as in exercise 4.6.

2. Approximate the equilibrium dynamics up to first order. Produce the theoretical counterparts

of the two tables showing Canadian and U.S. business-cycle regularities.

3. Comment on the ability of the model to explain observed business cycles in Canada and the

United States.

4. Plot the response of Canadian output, consumption, investment, hours, and the trade-balance-

to-output ratio to a unit innovation in the Canadian productivity shock. On the same plot,
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show the response of the Canadian variables to a unit innovation to the U.S. productivity

shock. Discuss the differences in the responses to a domestic and a foreign technology shock

and provide intuition.

5. Compare, by means of a graph and a discussion, the predicted responses of Canada and the

United States to a unit innovation in the U.S. productivity shock. The graph should include

the same variables as the one for the previous item.

6. Compute the fraction of the volatilities of Canadian output and the trade-balance-to-output

ratio explained by the U.S. productivity shock according to the present model. To this end, set

ηCan = 0 and compute the two standard deviations of interest. Then, take the ratio of these

standard deviations to their respective counterparts when both shocks are active.

7. This question aims to quantify the importance of common shocks as drivers of the U.S.-Canada

business cycle. Replace the process for the Canadian productivity shock with the following one

lnACant+1 = ρCan lnACant + ηCanεCant+1 + νεUSt+1.

All other aspects of the model are as before. Recalibrate the model using an augmented version

of the strategy described above that includes an additional parameter, ν, and an additional

target, the cross-country correlation of output, which in the sample used here is 0.64. Report

the new set of calibrated parameters. Compute the variance of Canadian output. Now set

ν = 0 keeping all other parameter values unchanged, and recalculate the variance of Canadian

output. Explain.

Exercise 4.10 (A EDEIR SOE with GHH Preferences and No Capital) Consider a small
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open economy populated by an infinite number of identical households with preferences of the form

(1− σ)−1
∞∑

t=0

βt
(
ct −

hωt
ω

)1−σ

,

where ct denotes consumption of a perishable good in period t, ht denotes labor effort in period

t, and β ∈ (0, 1), σ > 1, and ω > 1 are parameters. Each household operates a technology that

produces consumption goods according to the relationship

yt = hαt ,

where yt denotes output, and α ∈ (0, 1) is a parameter. The household can borrow or lend in

international financial markets at the interest rate rt = r∗ + ρ(d̃t), where r∗ denotes the world

interest rate and satisfies β(1 + r∗) = 1. The function ρ(d̃t) is a country interest-rate premium

in period t, satisfying ρ(0) = 0, and ρ(x) 6= 0 for x 6= 0, where d̃t denotes the cross-sectional

average debt holdings in period t and is taken as given by the individual household. Let dt denote

the household’s debt holdings in period t maturing in t+ 1. Households cannot play Ponzi games.

1. Write down the household’s optimization problem.

2. Derive the first-order conditions associated with the household’s optimization problem.

3. Display the complete set of equilibrium conditions.

4. Derive the steady state of the economy. In particular, compute the steady-state values of

consumption, hours, output, the trade balance, the current account, and external debt, denoted,

respectively, c, h, y, tb, ca, and d.

5. Derive analytically a first-order linear approximation of the equilibrium conditions. Express

it as a first-order difference equation in the vector [d̂t−1 ĉt]
′, where d̂t−1 ≡ dt−1 − d and
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ĉt ≡ ln(ct/c).

6. Derive conditions under which the perfect-foresight equilibrium is locally unique.

Exercise 4.11 (An SOE-RBC Model with Cobb-Douglas Preferences) Modify the period

utility function of the EDEIR SOE-RBC model of section 4.1 as follows

U(c, h) =

[
c1−ω(1− h)ω

]1−σ − 1

1 − σ
.

All other features of the model are unchanged.

1. Derive analytically the steady state of the model.

2. Set all parameters of the model as in table 4.1, except for ω. Calibrate ω to ensure that in the

deterministic steady state hours equal 1/3 (i.e., to ensure that in the steady state, households

spend one third of their time working). Calculate the implied value of ω.

3. Produce a table of predicted second moments similar to table 4.2. In performing this step,

you might find it convenient to use as a starting point the matlab programs for the EDEIR

SOE-RBC model posted online.

4. Compare the predictions of the present model with those of its GHH-preference counterpart.


