Government Taxes

Kevin Kotzé

Kevin Kotzé 1/38

Table of contents

- 1. Introduction
- 2. Taxes
- 3. Households
- 4. Firms
- 5. Government
- 6. Model calibration
- 7. Laffer curve
- 8. Tax changes
- 8. Productivity shock
- 9. Conclusion

Kevin Kotzé 2/3

Introduction

- Fiscal authority may be incorporated into a simplified version of our model
- Many different ways that Government could be incorporated into the model
- This lecture focuses on the effects of different government decisions regarding taxation
- Types of taxes include lump-sum non-distortionary taxes that don't alter household and/or firm decisions
- Distortionary taxes, such as income taxes or consumption taxes, affect the market price of goods and production inputs, as well as economic decisions of agents
- We consider the role of consumption tax, labour income tax, and tax on capital income

Kevin Kotzé 3/3

Introduction

- Key feature of the model is that these taxes introduce a distortion as they affect the relative price of production factors and final goods
- Assume that government decides on the tax policy and consumers and firms make their decisions accordingly
- To simplify the framework we also assume that public revenues are returned to the economy through exogenous lump-sum transfers
- Can use the model to compute Laffer curves that show the relationship between fiscal revenues and the tax-rate
- Can study the dynamic effects of a change in the tax rates (either permanent or temporary and anticipated or unanticipated)
- Finally, we will study the effects of an aggregate productivity shock in an economy with distortionary taxes

Kevin Kotzé 4/38

- Introducing taxes requires a modification to the household budget constraint and/or the profit function of firms
- Lump-sum taxes can be introduced in the following way:

$$C_t + S_t = Y_t - T_t$$

where C_t is consumption, S_t is saving, Y_t is income and T_t is a fixed amount of tax

 Income taxes may require the use of the following households budget constraint

$$C_t + S_t = (1 - \tau^y)Y_t$$

where τ^y is the income tax rate

Kevin Kotzé 5/3

Similarly, consumption and saving taxes can be introduced through:

$$(1+\tau^c)C_t + (1+\tau^s)S_t = (1-\tau^y)Y_t$$

where τ^c is the consumption tax rate and τ^s is the saving tax rate

- In these cases direct taxes are income taxes (i.e. labour income tax, capital income tax or corporate tax)
- Consumption taxes are indirect taxes, and cause the price of goods to be higher (i.e. VAT, import taxes, etc.)

Kevin Kotzé 6/38

- Fiscal policy models rely on realistic measures of marginal tax rates
- Mendoza et al. (1994) propose a method to estimate effective average tax rates that a representative agent takes into account
- · Bosca et al. (2009) has updated data for OECD countries
- Generally find that continental Europe has higher labour income tax than the tax on capital income
- Other OECD countries have higher capital income taxes than labour income tax

Kevin Kotzé 7/38

Country	$ au_c$	τ_n	τ_k
Australia	0.095	0.218	0.45
Austria	0.147	0.482	0.176
Canada	0.098	0.299	0.334
Denmark	0.199	0.397	0.448
Finland	0.176	0.451	0.256
France	0.129	0.43	0.298
Germany	0.12	0.374	0.177
Italy	0.107	0.431	0.283
Japan	0.062	0.257	0.356
Netherlands	0.146	0.359	0.192
Spain	0.116	0.348	0.252
Sweden	0.166	0.523	0.301
UK	0.124	0.255	0.325
USA	0.039	0.221	0.299

Kevin Kotzé 8/38

- In the subsequent model we consider the role of separate consumption, labour income and capital income tax
- Assume that fiscal revenues are returned to the economy just as a lump-sum transfer
- Household budget constraint takes the form:

$$(1 + \tau_t^c)C_t + S_t = (1 - \tau_t^n)W_tN_t + (1 - \tau_t^k)R_tK_t + T_t$$

where τ^c_t is the tax rate on consumption τ^n_t is the tax rate on labour income and τ^k_t is the tax rate on capital income

• Final consumption, consumption taxes and savings cannot exceed the sum of net labour income and net capital rental income plus transfers received from the government, T_t

Kevin Kotzé 9/38

- Note that transfers are a fixed amount so they do not influence decisions at the margin
- However tax rates will affect the consumption-saving and labour-leisure decisions
- To simplify our analysis we assume that government budget constraint is satisfied period-to-period

$$T_t = \tau_t^c C_t + \tau_t^n W_t N_t + \tau_t^k (R_t - \delta) K_t$$

 where the agents are able to obtain a tax break on depreciating capital

Kevin Kotzé 10/38

· Household utility function:

$$\max_{C_t, N_t} \quad U = \mathbb{E}_t \sum_{t=0}^{\infty} \beta^t \left[\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\gamma}}{1+\gamma} \right]$$

- where C_t and N_t refer to consumption and labour at time t
- σ represents the inverse of the intertemporal elasticity of substitution in consumption
- γ represents the inverse of the Frisch elasticity of labour supply

Kevin Kotzé 11/38

Budget constraint faced by the representative household:

$$(1 + \tau_t^c)C_t + S_t = (1 - \tau_t^n)W_tN_t + (1 - \tau_t^k)R_tK_t + T_t$$

- Suggests that total consumption & saving cannot exceed the sum of labour & capital rental income net of taxes & lump sum transfers
- Note that tax rates are constants and can be interpreted as average marginal tax rates

Kevin Kotzé 12/38

Capital stock evolves according to:

$$K_{t+1} = (1 - \delta)K_t + I_t$$

where δ is the capital depreciation rate which is modelled as tax deductible and where I_t is gross investment

• Assuming that $S_t = I_t$, the aggregate household constraint becomes:

$$(1 + \tau_t^c)C_t + K_{t+1} - K_t = (1 - \tau_t^n)W_tN_t + (1 - \tau_t^k)(R_t - \delta_K)K_t + T_t$$

Kevin Kotzé 13/38

Lagrangian problem to be solved by the household:

$$\mathcal{L}_{C_t, N_t, K_{t+1}} = \mathbb{E}_t \sum_{t=0}^{\infty} \beta^t \left\{ \left[\frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^{1+\gamma}}{1+\gamma} \right] - \dots \right.$$

$$\lambda_j \left[(1+\tau_t^c)C_t + K_{t+1} - K_t - (1-\tau_t^n)W_t N_t - (1-\tau_t^k)(R_t - \delta)K_t - T_t \right] \right\}$$

First-order conditions for the household:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial C_t} &= C_t^{-\sigma} - \lambda_t (1 + \tau_t^c) = 0 \\ \frac{\partial \mathcal{L}}{\partial N_t} &= -N_t^{\gamma} + \lambda_t (1 - \tau_t^n) W_t = 0 \\ \frac{\partial \mathcal{L}}{\partial K_{t+1}} &= \beta \mathbb{E}_t \lambda_{t+1} \left[\left(\mathbb{E}_t (1 - \tau_{t+1}^k) R_{t+1} - \delta \right) + 1 \right] - \lambda_t = 0 \end{split}$$

Kevin Kotzé 14/38

• Combining the first two derivatives for the Labour supply expression:

$$(1 - \tau_t^n) W_t = (1 + \tau_t^c) C_t^{\sigma} N_t^{\gamma}$$

· While the first and third derivatives provides the Euler expression:

$$\therefore \frac{(1+\tau_{t+1}^c)C_{t+1}^{\sigma}}{(1+\tau_t^c)C_t^{\sigma}} = \beta \left[(1-\tau_{t+1}^k)(R_{t+1}-\delta) + 1 \right]$$

Kevin Kotzé 15/38

Firms

- ullet Production of final output Y_t requires labour N_t and K_t
- Technology is given by a constant return to scale Cobb-Douglas production function,

$$Y_t = A_t K_t^{\alpha} N_t^{1-\alpha}$$

Kevin Kotzé 16/38

Firms

Maximisation problem for the firms is:

$$\max_{K_t N_t} \Pi_t = A_t K_t^{\alpha} N_t^{1-\alpha} - R_t K_t - W_t N_t$$

First-order conditions for the firms profit maximisation:

$$\begin{split} \frac{\partial \Pi_t}{\partial K_t} &= R_t - \alpha A_t K_t^{\alpha - 1} N_t^{1 - \alpha} = 0 \\ \frac{\partial \Pi_t}{\partial N_t} &= W_t - (1 - \alpha) A_t K_t^{\alpha} N_t^{-\alpha} = 0 \end{split}$$

Kevin Kotzé 17/38

Firms

• The first-order conditions are used to provide expressions for the production inputs:

$$R_t = \alpha A_t K_t^{\alpha - 1} N_t^{1 - \alpha}$$

$$W_t = (1 - \alpha) A_t K_t^{\alpha} N_t^{-\alpha}$$

Kevin Kotzé 18/38

Equilibrium

• For the goods market must clear

$$C_t + I_t = Y_t$$

Kevin Kotzé 19/38

Government

· Government budget in each period is given by,

$$\tau_t^c C_t + \tau_t^n W_t L_t + \tau_t^k (R_t - \delta_K) K_t = T_t$$

- Government keeps a fiscal balance in each period by returning revenues from taxes to household via lump-sum transfers, T_t
- Note that the private sector will react optimally to policy changes, and these policy changes are given exogenously

Kevin Kotzé 20/38

Calibration

Parameter	Calibrated Value	Description
σ	2	Consumption preferences
γ	1.75	Inverse Frisch parameter
α	0.35	Share of capital in production
β	0.97	Discount factor
δ	0.06	Capital depreciation rate
$ ho_A$	0.95	TFP autoregressive parameter
σ_A	0.01	TFP standard deviation
$ au^c$	0.116	Consumption tax rate
$ au^l$	0.348	Labour income tax rate
τ^k	0.225	Capital income tax rate

Kevin Kotzé 21/38

- Laffer (1981) relationship considers the level of taxes and the level of tax receipts (fiscal revenues)
- Should see that the curve intially increases before it starts to decrease when high taxes result in a decrease in production
- Position of the economy along the Laffer curve allows for the design of an optimal tax policy to maximise fiscal revenues
- When on the decreasing part of the Laffer curve a reduction in tax rates would improve economic activity and fiscal revenues
- When on the increasing part of the Laffer curve a reduction in tax rates would lead to improved economic activity, but at the expense of a decrease in tax revenues
- · Slope of the Laffer curve represents the elasticity of fiscal revenues

Kevin Kotzé 22/38

Kevin Kotzé 23/38

- Once we have calibrated the model, we are then able to compute the steady-state values for all the variables
- Including fiscal revenues for different tax rates
- Able to plot individual Laffer curves for consumption, labour income and capital income taxes
- Estimates represent the fiscal revenues at the steady state for each tax rate

Kevin Kotzé 24/38

Income tax

Kevin Kotzé 25/38

- Laffer for the labour income tax has a standard shape
- \bullet Dot indicates the calibrated level for the labour income tax rate that is used in the simulation, at 34.4%
- This falls in the increasing part of the curve, indicating that one can increase fiscal revenues by increasing this tax rate

Kevin Kotzé 26/38

Capital tax

Kevin Kotzé 27/38

- Laffer curve for a tax on capital income is very flat curve at the increasing part, but very steep in the decreasing part
- Caused by the distortionary effects of this tax on the process of capital accumulation and economic activity
- As we increase the tax rate on capital income, fiscal revenues also increase, but they do so by a very small amount
- This is because capital income is only a small proportion of total income of the economy
- When it reaches the maximum of the curve, further increases in the tax rate cause fiscal revenues to decrease rapidly

Kevin Kotzé 28/38

Consumption tax

Kevin Kotzé 29/38

- Laffer curve for consumption taxes are slightly more difficult to work with
- This particular tax rate may exceed 1 given that this is an ad-valorem tax and not a percentage on income
- Laffer curve is always positive for this tax rate and no maximum exists
- This tax does not adversely affect economic activity through the supply of production factors
- Increasing the consumption tax rate decreases consumption by a smaller proportion than the change in the tax rate

Kevin Kotzé 30/38

- Consider the case of a non-announced permanent increase in the consumption tax
- Initial consumption tax is 11.6% and changes to 13%
- Output reduces instantaneously, followed by a slow decline to the new steady state (0.4% lower than the initial steady state)
- Similar behaviour is observed for consumption
- Investment displays an overshooting effect, as investment is reduced on impact by an amount larger than the new steady state value
- · Fiscal revenues increase almost instantaneously
- Distortionary effects of this tax rate arise through intertemporal effects that gives rise to substitution between consumption & leisure and a change in investment decisions

Kevin Kotzé 31/38

Kevin Kotzé 32/38

- Dynamic behaviour of capital stock, labour, rental rate on capital and wages is influenced by the intertemporal substitution effects between consumption & saving and by the substitution effect between leisure & labour
- Rise in the tax reduces the purchasing power of wages and labour supply
- Reduction in labour plus the reduction in capital stock causes a decline in output
- Steady state values for the relevant variables are reduced as a result of higher tax rates

Kevin Kotzé 33/38

Kevin Kotzé 34/38

Total Factor Productivity shock

- Comparing the IRFs generated by the model economy with ones that pertain to a model without taxes (i.e. setting the rates to 0%)
- Effect on output is much lower, in quantitative terms, in a model with taxes
- Productivity shock has a positive effect on investment, but smaller in model with taxes
- Capital stock's steady state value increases in small amounts when compared to model without taxes
- Rise in rental rate of capital and the wage are quantitatively the same as those obtained in the basic model without taxes
- However, net of tax income generated by production factors is different, since a fraction of the income goes to government

Shock results in an increase in output and fiscal revenues

Kevin Kotzé 35/38

Total Factor Productivity shock

Kevin Kotzé 36/38

Conclusion

- Introduced a fiscal authority in a model with distortionary taxes
- Different taxes included: consumption, labour income and capital income tax
- Also assumed that the government budget constraint is fulfilled in each period and revenues are returned to households
- These taxes have distortionary effects on the decisions of individuals
 - Labour income & consumption taxes affect the labour supply directly
 - Capital income tax (and changes in consumption tax) affect investment decisions directly

Kevin Kotzé 37/38

Conclusion

- After establishing such a model we can construct Laffer curves for each tax type
- Assists with the creation of an optimal tax system
- Can also consider the effects of temporary and permanent changes in the tax rate
- Distortionary effects of tax ensures that a positive productivity shock has less expansionary effects

Kevin Kotzé 38/38