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Introduction
We now consider the procedures for forecast estimation and evaluation

These are relevant for both DSGE and ML models

During these sessions we will place emphasis on the econometric
foundations

Also consider the empirical implications of using different test statistics

The interested reader may enjoy the book by Elliot & Timmerman (2016)
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Look at the data
Before doing any forecasting the �rst thing that one would want to do is
plot the data

Look for changes in expected mean value of the underlying data-
generating process

Consider the degree of variability and potential changes in the variability

One should also try to detect obvious outliers
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Figure - Oil prices have a clear structural break
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Notation
Want to consider the use of various variables / models to forecast future
values of a target variable

Denote the target variable  and the set of predictors is 

When we are at time  and we want to forecast  steps into the future

Hence, we want to generate values for  given some predictors

Where there is linear relationship between these variables we use of the
regression model:

where  would then represent a vector of estimated coef�cients

yt xt

t h

Et [yt+h]

Et [yt+h] = β̂
⊤

xt

β̂
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Granger causality
To consider if these predictors are any good we perform a Granger
causality test

This would tell us if  is signi�cantly different from zero

Construct the null for no predictive ability

To perform the test we need to compare the estimated value of  against
the restricted value under the null hypothesis

Therefore, we are interested in the difference, 

β̂

H0 : β = 0

H1 : β ≠ 0

β̂

(β̂ − 0)
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Granger causality
In addition we are also interested in the potential variability in the
underlying data and associated estimate for 

If there is large variability in the underlying data then we may conclude
that larger value of  may be insigni�cantly different from zero

Therefore, when we only have a single predictor we could use a -test:

We reject the null hypothesis when the value for the -test is large

To reject the null within a 95% con�dence interval, 

Alternatively, we could consider the -values of the -test

β

(β̂ − 0)

t

tβ =
(β̂ − 0)

sd(β̂)

t

|tβ| ≥ 1.96

p t
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Granger causality
Note that this statistic is conditional on the value of 

A model could be useful when predicting one-step ahead, but useless at
twelve-steps ahead

When when we have several predictors we would need to construct an 
-test

To calculate an appropriate value for the denominator in the -test we
make use of the error term in the regression model

h

F

t

Et [yt+h] = β⊤xt + ϵt+h, where ϵt+h ∼ i. i. d.N (0, 1)
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Variance of the denominator
When using lags of the dependent variable to forecast forward the
shocks to the variable are not independent

Consider the AR(1) that may be used for successive  step-ahead
forecasts:

where the values for  represent the forecast errors

The larger is  the more serially correlated the error term

Need to use Newey & West (1987) heteroskedasticity and
autocorrelation consistent (HAC) estimate of the variance

h

Et [yt+1] = ρyt + ϵt+1

Et [yt+2] = ρyt+1 + ϵt+2 = ρ (ρyt + ϵt+1) + ϵt+2

Et [yt+3] = ρyt+2 + ϵt+3 = ρ (ρyt+1 + ϵt+2) + ϵt+3

⋮ = ⋮

ϵt+h

h
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Critique of Granger causality
If  Granger causes , it would not necessarily be a useful predictor of 

Messe & Rogoff (1983) note that although the interest rate differential 
 Granger causes a change in the exchange rate, , it

does not necessarily perform well when used in an out-of-sample
forecast evaluation exercise

Part of the intuition behind this result is that impressive in-sample
Granger causality statistics may be due to over-�tting or structural
breaks

This promoted the use of out-of-sample forecasting exercises

xt yt

yt

it+h − i∗

t+h
st+h − st

15 / 47



1

R P

TI
t

T+H

Recursive forecasting scheme

Rolling forecasting scheme

Figure - Out-of-sample notation
16 / 47



Out-of-sample forecasting
Make use of an in-sample portion of size  (i.e. training dataset)

Out-of-sample portion of size , which refers to all the predictions (i.e.
test dataset)

To generate the �rst forecast for  we would make use of the data
until period  to generate a forecast for period 

The in-sample period used in the estimation may be termed the
information set, denoted 

If we have quarterly data and want to obtain forecasts over the next
eight quarters (i.e. two years), then we would want to generate eight
successive forecasts, where 

The end of the forecasting horizon may be represented by , where in
this case, 

R

P

Et [yt+1]

R R + 1

It

h = {1, 2, … , 8}

H

H = 8
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Out-of-sample evaluation
After generating the forecast  we can compare it to the realised
value of this time series 

when comparing these values we generate the forecast error

To evaluate the accuracy of the forecast we mimic what the forecaster
would have done in real time

This involves estimating the model over various points of time to
generate a sequence of forecast errors

y
f

R+h

yR+h

ε
f

R+h
= yR+h − y

f

R+h
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Out-of-sample evaluation
After estimating the model with the use of data for the in-sample period 

 to calculate the initial forecast errors, the in-sample period would then
increase to 

Model is then re-estimated to generate a new value set of  coef�cients
to generate the new set of forecasts for the period 

This procedure would continue until the last estimation, which takes
place at time  to generate forecasts up until period 

R

R + 1

β̂

y
f

R+h+1

T T + H
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Out-of-sample evaluation
With a recursive scheme, the initial observation in the in-sample period is
�xed at the �rst observation

For a rolling-window scheme we maintain a �xed number of
observations for the in-sample period

Hence, the rolling-window scheme would be preferred when there are
potential structural breaks in the in-sample period

Recursive scheme may produce more accurate forecasts when the target
variable is relatively stable

When comparing the forecasts to the realised values of economic data,
which may be revised by the statistical of�ce

This promted individuals to store different vintages of data following the
�rst period release of such data
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Out-of-sample evaluation
This procedure provides a sequence of forecast errors that may be
expressed as follows:

Therefore we have a total of  forecast errors for each horizon, 

Could compare forecasts to real time vintages of data to exclude the
effects of data revisions

Mimic what the forecaster would have done over a period of time to
generate a sequence of forecast errors

{ε
f

t+h}
T

t=R

P h
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Model comparison
To consider if these forecasts are any good we could compare the results
against a random-walk model

Such a model may be expressed as:

Such a model could then be used to generate a second series of forecast
errors:

Etyt+h = yt

{εrw
t+h

}
T

t=R
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Model comparison
To measure whether the forecast errors are centred around zero we can
take the simple average of the forecast errors

This provides an estimate of the forecast bias:

This would not be the only statistic of interest as a model that has very
large over-predictions along with very large under-predictions could still
provide a bias of zero

We need to ensure that these positive and negative errors do not
necessarily cancel each other out

T

∑
t=R

{ε
f

t+h} and

T

∑
t=R

{εrw
t+h}
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Model comparison
Also need give due consideration to the particular loss function that
would be relevant to problem at hand

In certain cases we may be concerned by over-prediction more than
what we are concerned about under-prediction

This would call for the use of an asymmetric loss function

Also want to consider the degree to which we are concerned by outliers
in the forecasting error as this would also in�uence our choice of loss
function
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Figure - Loss functions
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Model comparison
Most popular of these three is a squared loss function that is used in the
root-mean squared error (RMSE)

Work with the mean squared error (MSE) which is a quadratic function
that places a larger penalty on large errors

The mean average predictive error (MAPE) makes use of the absolute
value of the forecasting error, which provides a linear loss function

In the literature there are many different functional forms for loss
functions including various asymmetric loss functions
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Model comparison
We denote the loss function  for the forecast that is  steps-ahead

The loss function could then be used to evaluate the forecasts from
competing models, after we have generated the sequence of forecast
errors

In the above example we have two sequences of forecast errors for 

 and 

Lt+h h

{ε
f

t+h}
T

t=R
{εrw

t+h}
T

t=R
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Model comparison
To identify the model that produces the most accurate prediction we use
a quadratic loss function in what follows

We �rstly take of the sum of the square of the individual forecasts errors
from each model before calculating the difference:

If the result is positive then it would suggest that the model that was
used to generate  is inferior

However, if this difference is negligible then we may want to suggest
that the models have equal predictive ability

ΔLt+h =

T

∑
t=R

{ε
f

t+h}
2

−

T

∑
t=R

{εrw
t+h}

2

ε
f

t+h
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Model comparison
To formally test whether a model has equal predictive ability we make
use of a -test

The null hypothesis is that the expected difference in the forecast errors
is not different from zero

t

H0 : ET+H [
T

∑
t=R

{ε
f

t+h
}

2

−
T

∑
t=R

{εrw
t+h

}
2
] = 0

∴ H0 : ET+H [ΔLt+h] = 0
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Model comparison
To perform this test we can take the sequence of values for  and
regress it on a constant, 

In this case the  coef�cient could be subjected to a -test to see if it is
signi�cantly different from zero in the regression:

ΔLt+h

c

β̂ t

ΔLt+h = β̂c + ϵt+h
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Model comparison
And the -test would be expressed as:

Use a HAC estimate of the standard deviation of 

In this case the estimated value of  would be equal to the average value
of the difference in the loss function

Such that

t

tβ =
β̂ − 0

sd(β̂)

ΔLt+h

β̂

β̂ =

T

∑
t=R

ΔLt+h = ΔL̄ t+h

1

P

tβ =
ΔL̄ t+h − 0

sd (ΔL̄ t+h)
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Diebold & Mariano test
We consider whether the  coef�cient is different from zero with a -test

Due to correlation in the residual we use a HAC estimate of the standard
deviation of the  sequence

To evaluate the result we conclude that the models do not have equal
forecasting ability when the -statistic is large

β̂ t

tDM = = =

∴ tDM = √P

β̂ − 0

sd (ΔL̄ t+h)

β̂ − 0

√var (ΔL̄ t+h)

β̂ − 0

√var( ∑T

t=R ΔLt+h)1
P

β̂ − 0

√var(∑T

t=R ΔLt+h)

ΔLt+h

t
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Diebold & Mariano test
Diebold & Mariano (1995) show that the distribution of the difference in
the loss function converges to the distribution of the normal distribution
when the number of forecasts that we have is suf�ciently large (i.e. more
than 100 observations)

Implies that when  we are unable to reject the null when
working with a 95% con�dence interval

In essence these authors are responsible for the development of a new
literature on how to compare the predictive ability of different models

|tDM | ≤ 1.96
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Parameter estimation error
Signi�cant limitation of Diebold & Mariano (1995) test is that we
frequently use an estimate for  to generate predictions that are not
actually observed

Other models, such as the random-walk do not make use of parameter
estimates

Typically the variability of the loss that is based on a parameter estimate
will be greater than the loss that is not based on a parameter estimate

Reason for this is that the loss that is calculated from the linear
regression is:

This would be more variable if there is a large degree of parameter
uncertainty relating to the value of 

Hence, such a model would usually under-estimate the necessary degree
of variability of the losses

β̂

ϵt+h = yt+h − β̂
⊤

xt

β̂
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Parameter estimation error
The effect of the estimation error on the degree of variability in the
forecast error is considered in West (1996)

Compares the forecasting errors for one model that includes estimations
errors, which is denoted below by , and another that does notM1

M1 : L
β̂

T =

T

∑
t=R

{yt+h − β̂
⊤

xt}
2

M2 : L
β

T =

T

∑
t=R

{yt+h − β⊤xt}
2

1

P

1

P
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Parameter estimation error
To consider the properties of the distribution of  he makes use of a
mean value expansion of  around 

Such an expansion could take the form

where  is the component that is due to the

estimation error

β̂

β̂ β

ΔL̄
β̂

T ≈ ΔL̄
β

T + [(β̂ − β)√R]√
∂L̄

β

T

∂ (β)

P

R

[(β̂ − β)√R]√
∂L̄

β

T

∂(β)
P
R
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Parameter estimation error
Therefore, in such cases the Diebold & Mariano (1995) test would need to
be amended, such that

Where  is the contribution of parameter estimation error that is due to
the variance of the losses

This allowed West (1996) to show that if the estimation error decreases
when the in-sample period increases, then the effect of parameter
estimation decreases when  increases for �xed values of 

tW = √P
β̂ − 0

√var(∑T

t=R ΔLt+h) + zt

zt

R P
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Nested models
When models are nested then some of the coef�cients from the larger
model are not available in the restricted model

When constructing the null hypothesis, the variance for  would be
equal to zero

Therefore when  then the variance will be zero and we are not able
to use the Diebold & Mariano (1995) test

This limitation is discussed in Clark & McCracken (2001) and it is an
important case, as the random walk model is often nested within other
models, or where a VAR model is nested in a DSGE model

ΔL̄
β̂

T

ΔL̄
β̂

T = (yt+h − β̂
⊤

xt)
2

− (yt+h − 0)
2

= 0 ∀t

β̂ = 0
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Nested models
They propose the use of an encompassing test that could be expressed
as follows:

Where  are the forecast errors of the small model and  are the
forecast errors of the large model

Note that as the denominator is not represented by the variance of ,
this statistic will not be subject to the same problems as the Diebold &
Mariano (1995)

ENCNEW = P

∑
T

t=R
(ϵ

2
1,t+h

− ϵ1,t+hϵ2,t+h)1
P

∑
T

t=R
ϵ

2
2,t+h

1
P

ϵ1,t+h ϵ2,t+h

ΔLT
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Nested models
This statistic does not have a standard distribution and as such the
critical values would need to be calculated from a Monte Carlo simulation
for 

These critical values are included in their paper and should only be used
for linear models

To calculate values for a different , we would need to apply a
bootstrap to the simulation

h = 1

h = 1
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Nested models
To generate a test statistic that could be compared to a normal
distribution Clark & West (2007) compare the properties of nested model
with the properties of a model that would be subject to a normal
distribution

In doing so they look to adjust the test statistic in a way that would allow
it to be compared to a normal distribution

So they consider the forecasts of a large model, where the forecasts are

generated by  along with a small random-walk model
that has forecasts 

Et (yt+h) = β̂
⊤

xt

Et (yt+h)
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Nested models
In the case of both models:

The essential idea is to adjust the mean-squared forecasting error of the
large model to correct for the effects of parameter uncertainty when
calculating the test statistic

MSFElarge =
T

∑
t=R

(yt+h − β̂
⊤

xt)
2

MSFEsmall = −
T

∑
t=R

(yt+h)
2

1

P

1

P
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Nested models
If one were to apply the Diebold & Mariano (1995) test to this problem
we would proceed as follows:

ΔL̄ T =
T

∑
t=R

(yt+h − β̂
⊤

xt)
2

−
T

∑
t=R

(yt+h)
2

=
T

∑
t=R

(yt+h)
2

+
T

∑
t=R

(β̂
⊤

xt)
2

−
T

∑
t=R

(yt+h)(β̂
⊤

xt)− …

−
T

∑
t=R

(yt+h)
2

=
T

∑
t=R

(β̂
⊤

xt)
2

−
T

∑
t=R

(yt+h)(β̂
⊤

xt)

1

P

1

P

1

P

1

P

2

P

1

P

1

P

2

P
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Nested models
Now under the null hypothesis  such that,

Note that if we assume that  are independent then 

Since the value for  will always be positive the loss of

the large model will always exceed the small model

yt+h = ϵt+h

H0 :
T

∑
t=R

(β̂
⊤

xt)
2

−
T

∑
t=R

(ϵt+h)(β̂
⊤

xt)

:
T

∑
t=R

(β̂
⊤

xt)
2

− β̂

T

∑
t=R

(ϵt+h) (xt)

1

P

2

P

1

P

2

P

ϵt+h

β̂ ∑
T

t=R ϵt+hxt = 02
P

∑
T

t=R
(β̂

⊤
xt)

2
1
P
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Nested models
This statistic is used in Clark & West (2007) to correct the Diebold &
Mariano (1995) to correct for the unfair advantage of the smaller model

Since the distribution for  should be normal, when

correcting the the Diebold & Mariano (1995) test, which is asymptotically
normal by the distribution of something that is also normally distributed,
we are left with a test statistic that is asymptotically normal

Therefore the Clark & West (2005) statistic applies a similar framework
to Diebold & Mariano (1995) test, but where the measure of  is
adjusted for the estimation error

∑
T

t=R (β̂
⊤
xt)

2
1
P

ΔL̄ T

tCW = −→ N (0, 1)
ΔL̄

adj

T − 0

√var(L̄
adj

T )
H0
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Nested models
The utlimate effect of this is that it would be easier for the large model to
outperform the small model when using the Clark & West (2007) as
opposed to using the Diebold & Mariano (1995) test on nested models

Note that this is a one-sided test, where we are only testing the null that
the models have equal predictive ability, or that the large model provides
more accurate estimates

These statistics do not test whether or not the small model provides more
accurate forecast estimates

In addition all of these tests focus on the null hypothesis, ,

based on , where  is the true parameter estimate

To make use of a different null hypothesis, , where 

 is the sample estimate of the population parameter, consult the work
of Giacomini & White (2006)

H0 : β = 0

E(ΔL
β

t+h
) = 0 β

H0 : E(ΔL
β̂

t+h
) = 0

β̂
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Summary
In the case of the out-of-sample tests the value of the coef�cients are
changing with each successive estimation

This would not be the case in the in-sample Granger causality tests

In the next few sessions we are going to focus on the use and limitations
of some of these evaluation tests
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